
Optimizing Threads of Computation in Constraint Logic

Programs

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

William E. Pippin, Jr., B.S., M.S.

* * * * *

The Ohio State University

2003

Dissertation Committee:

Professor Neelam Soundarajan, Adviser

Professor P. Sadayappan

Professor Gerald Baumgartner

Approved by

Adviser

Department of Computer
and Information Science

ABSTRACT

This research concentrates on the optimization of Constraint Logic Programming,

or CLP, languages, and in particular, a significant class of optimizations that focus

on program loops.

Declarative systems represent loop state by chains of variables, whether in call

stack frames, or the rows of a system of equations, and the time costs are significant

compared to imperative languages that can reuse variables during iteration. In partic-

ular, some procedures add numerical constraints to the solver in a predictable pattern,

using far less than the full power of the constraint solver. We wish to optimize these

chains of constraints, or threads.

We use a matrix-vector pair, an affine transform, to represent the incremental

computation that occurs at each iteration of a recursive predicate. By the associativ-

ity of transform multiplication, we may compose a chain of ground transforms prior

to their application to program variables: Tn(. . .(T1(x̃)). . .) = (Tn ◦ . . . ◦ T1) x̃ =

(Tn ∗ . . . ∗ T1) x̃. The accumulated composition is then applied to relate the proce-

dure parameters in a single step outside the loop, reducing the number of solver calls

from O(n) to O(1).

An implementation of the thread optimization for a CLP system requires compile-

time analysis, source translation, and specialized code generation. We modify an

ii

existing CLP compiler, CLP(R), to add the analysis, translation and code generation

phases, and run timing tests to determine the actual speedup.

This work defines and proves correct a broad class of CLP optimizations, the

thread optimizations, which apply to a wide variety of recursive procedures in any

practical CLP language; describes our implementation of the thread optimization of

numeric constraints, for an instance of the CLP family, CLP(R); and demonstrates

that this implementation achieves a significant speedup for optimized programs.

iii

In Memoriam

Capt William E. Pippin, USN(Ret)

1930 – 2002

iv

ACKNOWLEDGMENTS

I’ve accumulated innumerable debts during my time as a Ph.D. student at The

Ohio State University, and I can only begin to ackowledge them here.

I want to first mention my father, Capt. William E. Pippin, USN(Ret). He gave

me unfailing support in many ways, not least of all my education, starting from the

very beginning when he suggested I attend graduate school, to my decision to seek

this degree, to our last conversations together, when one of his wishes for me was that

I finish it. He was a great man, and I was fortunate to be his son.

Some readers may not know the name of Daisaku Ikeda. He is a renowned edu-

cator, peace activist, and Buddhist, and I am proud to claim him as a mentor, and

teacher in life. It’s from him that I learned the importance of life-long education, so

that I could see the value of returning to graduate school after a number of years in

the work force. I owe him far more than can ever be touched on here.

I’ve been fortunate to have two superb Ph.D. advisors.

I owe the first, Spiro Michaylov, my introduction to logic programming, and to

CLP(R); the chance to attend ILPS 94, and speak there on the thread optimization;

and the opportunity to work on the source code to the CLP(R) system. From Spiro

I enjoyed the experience of working on a research team along side top notch people,

not only Spiro, but also the rest of our CLP research team. I’d like to mention

v

here in particular as good friends and colleagues Nathan Loofbourrow, and Chris

Bailey-Kellogg.

The friends you make in your entering class can be particularly close, as they

share the common experience of scrambling for footing in that first, hectic quarter.

Ed Swan is a great guy, and good person, and I still remember the encouragement

he gave me that first quarter: “Don’t worry, during the first quarter they are there,

everyone who enters grad school wonders if they’ll make it.” Jing Ziang was my

closest friend at OSU during the first two years, during the masters-level work, and

I hope we can re-establish contact. I’d also like to mention Chao-hui Wu; our efforts

together studying for the qualifying exam are a warm memory. And hello to all the

gang from Dreese Labs 694, who were a great bunch to work with, including especially

Supna, and Sandeep, and Gopal Dommety.

Research teams may break up as members depart to other places, and it happened

that Spiro Michaylov returned to industry, and I remained at OSU. I chose to continue

work on optimizing CLP(R), so that I needed another advisor.

I was fortunate that Neelam Soundarajan agreed to take me on as a student, and

even allow me to continue the work I had been doing. He has helped me so many

times throughout this process. There are any number of times where I wouldn’t have

made it without his help, and I have no intention of trying to explain or list them;

the most memorable involve some real blunders on my part, and I’m glad Neelam

was there to give advice on how I could salvage the situation. What I do want

to mention, however, is the constant encouragement, the unerring suggestions that

improved both system and dissertation architecture, and most of all the unstinting

vi

concern and consideration backed by an unshakeable determination that I would win

out.

Beyond my reading committee, about which more in a moment, a number of other

faculty have been very helpful.

Merv Muller was generous with time and advice when I started at OSU, to help

me get my footing, and I’ve never had a good chance to ackowledge that debt. This

is a late start, and I begin here.

As my pre-candidacy advisor, Bruce Weide gave me an early introduction to the

workings of a research team with the meetings of his reuseable software group, and

I learned a lot. Bruce was helpful and considerate, and though I chose another area

for my research, it was with regret. In my defense, my first love in research areas is

programming languages, and software engineering couldn’t compete.

Judith Gardiner is not only a very nice person, and a very sharp researcher, she

also gave important early help by pointing out that the matrix-vector pairs we were

working with are also called affine transforms.

Stuart Zweben is a friendly and interesting guy, and helped out at critical moment

with travel money; thanks Stu. Rephael Wenger was patient with me more times than

I can count, another example of a faculty member who puts students first. Again,

thanks.

B. Chandrasekaran is an excellent mentor. Although I was not one of his advisees,

each contact we had showed his concern and interest in my progress. I’d also like to

thank Doug Kerr for the help with database systems. Paolo Sivilotti attended one of

the meetings of my reading committee, and had some very insightful comments.

vii

Every contact I’ve had with people from the Mathematics Department has been

great. Amazing, given how difficult upper level and graduate mathematics can be for

people like myself who are from other disciplines. I owe Tim Carlson in particular a

debt, for his repeated efforts to help me understand mathematical logic.

Although some researchers are supposed to be very narrowly and personally fo-

cused, that’s not my experience of the logic programming community. They all seem

to be a group of warm, considerate people who are very welcoming to newcomers.

Leon Sterling is an excellent educator, and helped me understand the best way to

communicate the essence of the thread optimization. Peter Stuckey and Roland Yap

are both very nice people, and were very helpful. I enjoyed interesting conversations

with Bill Older, and R. Skuppin, Pascal Van Hentenryck, and Jennifer Burg kindly

provided me with access to their own work. Fergus Henderson is an outgoing, in-

teresting advocate for the Mercury logic programming language, and I enjoyed our

conversations about logic programming. I haven’t yet had the pleasure of meeting

Mats Carlsson, but my impression by email is that he is truly dedicated to helping

people do logic programming.

I had a great reading committee. Professors P. Sadayappan and Gerald Baum-

gartner made excellent suggestions and offered perceptive questions, as is to hoped

from knowledgeable faculty. More critically, for both, every meeting with me was a

chance to encourage me in my research, say by considering it in the larger context of

our field, rather than my micro-focus of the day, and to help me realize where it could

lead, and what could come after. The meetings were great. Some of the comments

would finally sink in months later. And I should probably give explicit credit here for

a critically important decision: all the members of my reading committee decided I

viii

needed to push on and finish, at a time when it took both wisdom and courage to set

that goal. It probably would have been easiest to let me take a break, but hard work

has been a wonderful anodyne for personal suffering, and I can’t thank each person

enough for this very perceptive choice.

My work was supported in part by an NSF grant, CCR-9308631, as well as teaching

and research assistantships, all of which one way or another draw support from my

fellow citizens. I’d like to say that I believe such public support for research and

education is wonderful, and thank you all very much.

As the reader may have guessed, I had to deal with personal tragedy near the end

of this process. Much of the most critical support I received this last summer came

from people outside OSU who knew my father, or knew me, and simply wanted to

offer heartfelt condolences. I’d like to mention here all those who came to my father’s

memorial service. Whether they came because of previous aquaintance with him, or

me, their warmth was precious, and at a very hard time. Some people gave me critical

encouragement during this time, and I’d like to mention here especially Yuko Weaver,

Ed Weaver, Derek Yang, Junko Watson, Rich Burgan, and Ernestine Jackson.

Many SGI-USA members and friends encouraged me and chanted daimoku (Nam

myoho renge kyo) for my success, and I can only acknowledge a few here. Brian

Otahara, Jeffrey Meguro, and Sakon Kitavacharapon gave me important encoura-

ment early on, and most recently, Hiroshi and Masako Matsumura, as well as their

daughters, Yukiko, Kaoru, and Megumi, gave warm encouragement. I know Brenda

Amapadu chanted for my success, thanks Brenda! There are many others, too many

to name here, including any number of people in Columbus North District who lis-

tened to blow-by-blow accounts of my struggles, and always knew I’d win.

ix

My family has been wonderful. My mother, Paula Pippin, with her own experience

in graduate work, has been unfailingly supportive, even when it was very difficult to

be so, and my sisters Tricia, Sonny, and Tina have always looked on each step I took

forward as a shared victory.

Thank you all!

x

VITA

1977–1982 . B.S. Economics, George Mason
University.

1982–1990 . Programmer: International Technical
Services; The Orkand Corporation;
American Management Systems; Tech-
nology and Management Associates.

1990–1992 . M.S. Computer and Information
Science, The Ohio State University.

1992–1998 . Graduate Assistant, The OSU
Department of Computer and
Information Science.

PUBLICATIONS

Research Publications

Spiro Michaylov and Bill Pippin. “Optimizing Compilation of Linear Arithmetic
in a Class of Constraint Logic Program”. In Maurice Bruynooghe, editor, Logic

Programming: Proceedings of the 1994 International Symposium, 586–600. The MIT
Press, November 1994.

FIELDS OF STUDY

Major Field: Computer and Information Science

Studies in:

Programming Languages Professors Spiro Michaylov and Neelam Soundarajan
Artificial Intelligence Professor B. Chandrasekaran
Database Systems Professor Doug Kerr

xi

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . xi

List of Figures . xvi

Chapters:

1. Introduction . 1

1.1 Background . 1

1.1.1 Pure Logic Programs . 2
1.1.2 The Dual Reading, Modes, and Arithmetic 5

1.1.3 The Value of Constraints in Logic Programs 9
1.2 Problem . 11

1.2.1 Page Layout Using sum/3 11

1.2.2 Avoiding the Solver for Efficient Loop Computation 14
1.2.3 Problem Statement . 15

1.3 Approach . 16
1.3.1 Page Layout Continued . 16

1.3.2 Approach of the Thesis . 18
1.4 Contributions . 19

1.5 Related Work . 19

xii

2. Constraint Logic Programming . 20

2.1 The Mortgage Program Example 20
2.1.1 Successful Queries . 21

2.1.2 Issues with Correctness and Completeness 23
2.1.2.1 Floating Point Comparisons 23

2.1.2.2 Nonlinear Constraints 24
2.1.2.3 Rule Selection . 24

2.2 CLP Programming Concepts and Idioms 25
2.2.1 Groundness and Modes . 26

2.2.2 Determinism, Backtracking, and Indexing 26

2.2.3 Accumulator Pairs . 28
2.3 A Sketch of the CLP(R) Runtime and Compilation Architecture . 29

2.3.1 The CLP(R) Solver . 30
2.3.1.1 The Solver Interface 30

2.3.1.2 Delay . 31
2.3.2 CLP(R) Compilation . 33

2.4 Selected Techniques for CLP Optimization 35
2.4.1 CLP(R) Optimization . 35

2.4.2 Linear Threads of Computation 36
2.5 Modern CLP Systems Beyond CLP(R) 37

2.5.1 Mercury . 38
2.5.2 GNU Prolog . 38

2.5.3 HAL . 38

3. Affine Transform-Based Analysis of Loop Bodies 40

3.1 Analysis of Threads of Computation 41
3.1.1 Introducing The Thread Translation 42

3.1.2 Defining Thread Operators 44
3.2 Affine Transform Derivation . 50

3.2.1 Examples of Transform Derivation 50
3.2.1.1 The Fibonacci Relation 50

3.2.1.2 The Mortgage Program 53
3.2.2 The Transform Derivation Algorithm 57

3.3 Optimizing Transform Composition 59
3.3.1 Order Reduction . 60

3.3.1.1 Projection . 60
3.3.1.2 Splitting . 60

3.3.2 Identity Elimination . 61
3.3.2.1 Zero Vectors . 61

xiii

3.3.2.2 Identity Matrices . 61
3.3.2.3 Identity Rows . 61

3.3.3 Code Hoisting . 62
3.3.3.1 Subexpression Elimination 62

3.3.3.2 Successive Doubling 62
3.4 Additional Properties of Affine Transforms 63

3.4.1 Affine Transform Catenation and Splitting 63
3.4.2 Constraint Reordering and Transform Inverses 65

4. Thread Translations for Recursive Procedures 68

4.1 Linear Recursive Procedures . 68

4.1.1 The Fundamental Thread Translation 70
4.1.2 Applying the Thread Translation to the Mortgage Program 73

4.1.2.1 The Optimized Loop 73
4.1.2.2 The Wrapper . 76

4.1.2.3 Determinism and Termination 78
4.2 Asymmetrical and Multiply Recursive Rules 80

4.2.1 Asymmetrical Rules and Transform Inverses 80
4.2.2 Multiply Recursive Rules 85

4.2.2.1 Multilinear Recursion 85
4.2.2.2 Non-linear Recursion 87

5. Theoretical Properties . 93

5.1 Properties of Affine Transforms . 93
5.2 Correctness of the Thread Translations 96

5.3 Composition for Inequality-Related Affine Transforms 107

5.3.1 Redundant Threads of Affine Computation 107
5.3.2 The Composition of Inequalities by Affine Transforms . . . 110

6. Results . 114

6.1 Theoretical Expectations . 114
6.2 Benchmark Methods . 115

6.2.1 Examples . 115
6.2.2 Measuring Time . 116

6.2.3 The Test Harness . 117
6.3 Plots of Observations . 118

6.3.1 Time as a Function of Loop Iterations 118
6.3.2 Break-even Points for Wrapper Overhead 122

6.3.3 Outliers as a Function of Clock Tic Phase 122

xiv

6.4 Conclusions About Speedups . 124
6.4.1 Asymptotic Speedup . 125

6.4.2 Break-even Point Statistics 126

7. Conclusions and Future Work . 128

7.1 Conclusions Drawn from CLP Analysis 128

7.2 Conclusions From Implementation 129
7.3 Future Work . 130

7.3.1 Code Hoisting . 131
7.3.2 Computing With Inequalities 131

7.3.3 Adding Mode Coverage . 132

7.3.3.1 Finding Secondary Disjoint Modes 132
7.3.3.2 Creating Additional Modes 133

7.3.4 Compilation to a Concrete Machine 136

Appendices:

A. The CLP Scheme . 137

A.1 Logic . 137
A.1.1 Implementation . 141

A.1.2 An Interpreter . 143
A.2 Proof . 150

A.2.0.1 Resolution . 150
A.2.0.2 Negation as Failure 153

A.3 Semantics . 156

Bibliography . 161

xv

LIST OF FIGURES

Figure Page

1.1 List Processing Predicates in Prolog 2

1.2 Queries Involving Simply Functional Computation 4

1.3 Relational Queries . 6

1.4 Arithmetic in Prolog . 8

1.5 The Mortgage Relation . 10

1.6 CLP(R) Program for Page Layout . 12

1.7 Program, Query, and Accumulated Constraints for sum/3 15

2.1 The Mortgage Relation . 22

2.2 Queries to the Mortgage Relation . 23

2.3 An Example of Accumulator Passing Style 30

3.1 sum/3 Has Both Accumulator and Thread Pairs 42

3.2 The Fibonacci Relation in Accumulator Pair Form 51

3.3 The Mortgage Relation . 53

3.4 The Transform Derivation Algorithm 58

3.5 Constant Terms in the Transform Composition for mg/5 59

xvi

3.6 The Loop Kernel for Transform Composition for Optimized mg/5 . . 60

3.7 A Mortgage Program Variant Without Tail Recursion 66

3.8 Using Transform Inverses to Allow Constraint Reordering 66

4.1 Numeric, Linear Recursive, Thread Optimizable CLP(R) Predicates 72

4.2 The Affine-Threaded Mortgage Relation 74

4.3 The Wrapper for the Optimized Mortgage Relation 76

4.4 List length/2 Sacrifices Tail Optimization 84

4.5 The Mortgage Program with Asymmetrical Rules 84

4.6 Linear Recursive Fibonacci Number Relations 85

4.7 The Original Form of the Circuit Procedure 91

4.8 The Thread Optimized Form of the Circuit Procedure 92

4.9 Transform Pairs for the Circuit Procedure 92

5.1 Linear Recursive Thread Translations 98

5.2 The Base Case for Proposition 5.4 . 99

5.3 Translation Schema for Base Case Rules 103

5.4 Translation Schema for Linear Recursive Rules 103

5.5 The Inductive Case for Proposition 5.4 104

5.6 The Base Case for Proposition 5.7 . 104

5.7 Translation Schema for Multiple Base Rules 105

5.8 Translation Schema for Nonlinear Recursive Rules 105

5.9 The Inductive Case for Proposition 5.7 106

xvii

5.10 Using max/2 to Find the Maximum of a Sequence 113

6.1 Benchmark Test Examples . 115

6.2 Performance for Original and Optimized Procedures 119

6.3 Break-even Plots . 123

6.4 Speedups . 126

6.5 Break-even Points for Optimization 127

7.1 Reordering Constraints Loses Tail Recursion 134

7.2 Accumulator Pairs and New Constraints Increase Mode Coverage . . 134

A.1 A CLP Interpreter . 144

xviii

CHAPTER 1

Introduction

A number of programming languages have been developed with the goal of provid-

ing a more elegant and concise means for the representation and implementation of

algorithms, typically by basing the language design on a well understood mathemat-

ical model. Under this heading are included the functional and logic programming

languages, and in particular the constraint logic programming, or CLP, languages.

Logic programming languages allow us to state programs as sets of rules, providing

a concise notation and clean semantics. The resulting clarity and brevity offers the

hope that we can express complex problems clearly and correctly.

Such languages are not in widepread use, and lack of efficiency is an important

reason for this. This thesis concentrates on the optimization of CLP languages, and

in particular, a significant class of optimizations that focus on program loops.

1.1 Background

We first illustrate logic programming with Prolog predicates and queries, since

Prolog is the canonical example of a logic programming language; next discuss an im-

portant weakness of Prolog, the absence of any builtin constraint other than syntactic

1

equality; and finally consider the family of CLP languages, which provide improved

constraint primitives. Our interest is in optimizing the more powerful CLP languages.

% member(L, X) <- X is a member of the list L

% append(X, Y,Z) <- Z is the list consisting of Y appended to X.

member([Y|Ys], X) :-

X = Y.

member([_|Ys], X) :-

member(X, Ys).

append([], Y, Z) :-

Y = Z.

append([X|Xs], Y, Z) :-

Y = [X|Ys],

append(Xs, Ys, Z).

Figure 1.1: List Processing Predicates in Prolog

1.1.1 Pure Logic Programs

Prolog includes a subset language having a purely logical meaning, consisting of

definite clauses with equality; Figure 1.1 uses this pure subset to define two predicates

from list processing.

Each predicate consists of a set of rules, a conjunction of definite clauses sharing

the same consequent. In Prolog the rules are laid out as reverse implications, with

the consequent, or head, coming first, and so the rules making up a predicate may be

easily identified by this common head. In rules with antecedents, that is non-empty

bodies, the infix reverse implication operator :- follows the head, and is itself followed

by a conjunction of goals, with conjunction denoted by commas; while in the case of

2

facts, rules having an empty body, the reverse implication is understood. In either

case a period terminates the rule.

Variables begin with capital letters or the underscore, while constant, function,

and predicate names begin with lower case characters or special symbols, and con-

sist of a pair name/arity. In the example, the predicate names are member/2 and

append/3; the function symbols are []/0 and |/2 for nil and infix cons, respectively;

and the variable names are X, Y, Z, Xs, Ys, and , with variable scopes limited to the

enclosing rule, rather than extending to the entire predicate.

Goals consist of user-defined goals, here the recursive calls to member/2 and

append/3, and primitive constraints, here the explicit equalities, where equality car-

ries its true, logical meaning.

Lists, including the empty list [], begin and end with square brackets. In addition

to their use to indicate conjunction, commas are also used as punctuation to separate

arguments in lists and other terms. Finally, comments are introduced with % symbols.

The predicates above become complete programs when combined with a query, a

definite clause having an empty head. Figure 1.2 lists a brief session with a Prolog

interpreter, where example queries to member/2 and append/3 have been solved, and

the resulting variable bindings, if any, printed. In each case, a query is entered in

response to the ?- prompt, ended by a period, and then tested for satisfiability by

the interpreter, with any resulting answer substitution printed out, followed by yes

or no to indicate whether derivation succeeded.

The queries demonstrate the ordinary functional reading of member/2 and append/3

that we expect for list processing; a list either does or does not include a particular

element, and two lists may be appended together to result in a third. The first two

3

?- member([a,b,c,d,e], c). % 1

yes

?- member([a,b,c,d,e], f). % 2

no

?- append([a,b], [c,d,e], X). % 3

X = [a,b,c,d,e]

yes

Figure 1.2: Queries Involving Simply Functional Computation

queries have no variables, and so only succeed or fail, without any answer substitution

being printed, while the last appends two lists to compute a third, and prints this

result.

These three queries may be thought of as performing tests or computing an

output from inputs, as in a functional language. They also have a purely logical

meaning, that the theory implied by the clauses of Figure 1.1 includes the facts

member([a, b, c, d, e], e) ← and append([a, b], [c, d, e], [a, b, c, d, e]) ←, or equivalently,

that the predicates member/2 and append/3 define relations including the tuples

([a, b, c, d, e], e) and ([a, b], [c, d, e], [a, b, c, d, e]).

Since equality has its full logical meaning, as opposed to only computing a right-

hand side result and binding it to a left-hand side variable, the programs using the

relations of Figure 1.1 can do more than perform tests and combine known lists; we

are not restricted to computing the last argument of a relation, but may query for

any combination of arguments.

4

The queries in Figure 1.3 still have the purely logical meaning of projecting answer

substitutions from tuples in the member and append relations, but no longer fit within

the functional reading of testing or computing a result from inputs.

In the first three queries of Figure 1.3 we compute an input given a known result,

so that the member/2 and append/3 relations also allow us to compute function

inverses, and we see that such predicates subsume multiple functions. The fourth

demonstrates the non-deterministic nature of a Prolog interpreter; additional answers

are generated by backtracking until the user grows tired of using a semicolon, the

disjunction operator, to ask for alternatives. In the last query, we find a sequence

intersection by non-deterministic computation, using two member/2 goals to choose

the common element from a pair of lists.

1.1.2 The Dual Reading, Modes, and Arithmetic

The dual reading of Kowalski [Kow74] interprets a definite clause p ← (q ∧ r) as

both a formula, p is true given q and r, and a procedure, directing that we solve for

the head p by solving the goals q and r.

Prolog has a fixed selection order during derivation, choosing rules top to bottom

and goals left to right, so that by the dual reading we may reason operationally

about program execution. We interpret the member/2 and append/3 predicates as

procedures, where the clauses make up a case statement, each rule is a distinct case,

and goals are procedure calls.

We may reason operationally about when variables are bound, and so determine

when backtracking occurs, and whether constraints can be solved directly by the

5

?- member([a,b,c,d,X], e). % 1

X = e

yes

?- append(X, [c,d,e], [a,b,c,d,e]). % 2

X = [a,b]

yes

?- append([a,b], Y, [a,b,c,d,e]). % 3

Y = [c,d,e]

yes

?- append(X, Y, [a,b,c,d,e]). % 4

X = [], Y = [a,b,c,d,e]

; X = [a], Y = [b,c,d,e]

; X = [a,b], Y = [c,d,e]

yes

?- member([a,b,c], X), member([c,d,e], X). % 5

X = c

yes

Figure 1.3: Relational Queries

6

hardware, or require symbolic computation. The queries above also showed that

procedures can have multiple uses, as different arguments are already bound or not.

These notions of variable binding state and predicate calling pattern have names.

A completely bound term is said to be ground. More precisely, a ground term is

a constant symbol, a function symbol with ground arguments, or a ground variable,

where a ground variable is one bound to a ground term. We also refer to the mode

of a term, + for ground, - for unbound, and ? for unknown or don’t care. We use a

tuple of such symbols to give a mode description for a goal, or mode declaration for

a predicate, e.g. the first append query of Figure 1.3 has mode append(-,+,+), and

the append predicate is written to accept arguments of any mode, and so has mode

declaration :- mode(append(?,?,?)).

Given the notion of calling mode, we can now explain how arithmetic is added to

Prolog, and with what limitations. Equality in Prolog is uninterpreted, or syntactic,

equality, where the goal 2 + 2 = 4 fails. In place of equality for arithmetic, Prolog

includes the builtin non-logical operator is/2, with mode(is(-,+)), and an example

of its use is given in the definition of the length/3 predicate, Figure 1.4. In that

definition, for the goal K is I+1, the variable K is newly introduced, and therefore

unbound, while the parameter I is bound, and the term I+1 ground, so that the

increment operation is computed as if by an imperative assignment.

In Figure 1.4, the first query uses the ordinary functional meaning of length/2

to compute the length of a list. The second query includes a numeric constraint;

the length/2 relation, rather than computing the length of a list, computes the list

with a given length, and that list constrains an otherwise non-deterministic query to

a single result.

7

% length(X, N) <- the list X has N elements

length(X, N) :-

length(X, 0, I),

N = I.

length([], N, N).

length([X|Xs], I, N),

K is I+1,

length(Xs, K, N).

?- length([a,b,c,d,e], N). % 1

N = 5

yes

?- length(X,2), append(X, Y, [a,b,c,d,e]). % 2

X = [a,b], Y = [c,d,e]

yes

Figure 1.4: Arithmetic in Prolog

In the procedure definitions for length/{2,3}, the restricted mode for is/2 sim-

ilarly limits use of length/3, which may only be called with mode length(?,+,?).

The logical reading is lost, and programmers must now reason explicitly about vari-

able bindings, since mode violations for is/2 cause run-time errors. Although the

mode limitation for the auxiliary procedure length/3 is finally hidden by projection

within length/2, for more sophisticated uses of arithmetic than loop counters, the

problem is not so easily finessed. In practice, Prolog programs with arithmetic lose

the purely logical reading.

8

1.1.3 The Value of Constraints in Logic Programs

Ultimately, the simplicity of logic programs springs from the use of constraints,

the most fundamental of which is equality. Logic programming offers true equality

rather than assignment or matching. This allows us to write programs that directly

reflect their purpose, and reason about those programs using the declarative meaning.

The choice of equality theory is also important.

With uninterpreted, or syntactic equality, we are unable to directly express equa-

tional relationships such as associativity or commutativity, so that the only purely

logical way to encode such relationships is with programmer-defined predicates. This

conversion of interpreted function symbols to user-defined predicates is unsatisfactory,

not least because such procedures are incomplete, and in practice this is observed as

non-termination for some queries. Limiting ourselves to the empty equality theory,

where the constraint 2 + 2 = 4 fails, or using non-logical makeshifts such as is/2,

where the goal 2+2 is 4 gives a runtime error, are also unsatisfactory alternatives.

We can do much better if we choose a more powerful equality theory that still has

an effective satisfiability algorithm.

We define an instance of the CLP family by selecting a first-order theory with

equality, and implement that language by replacing the unification algorithm of Prolog

with an algorithm, the solver, able to eliminate qualifiers for that theory.

One instance of the CLP family, linear real arithmetic with inequality, has been

named CLP(R) [JMSY92b], and uses incremental gaussian elimination and first phase

simplex to test real constraints for satisfiability. The use of a linear solver for arith-

metic provides a realistic balance between equational power and algorithmic complex-

ity.

9

% mg(P, T, I, R, B) <- For principal P and monthly interest rate I,

% B is the balance after T months given a monthly repayment of R.

mg(P, T, I, R, B) :-

T > 0,

A1 = P * (I + 1) - R,

A2 = T - 1,

mg(A1, A2, I, R, B).

mg(P, T, I, R, B).

T = 0,

B = P.

?- mg(100000, 360, 0.00625, R, 0).

R = 699.215

yes

?- mg(P , 360, 0.00625, R, 0).

R = .00699215*P

yes

Figure 1.5: The Mortgage Relation

By way of example, consider the mortgage program, Figure 1.5, where the no-

tation is that of Prolog, except that is/2 is replaced by equality. CLP(R) is able

to provide not only numeric answer substitutions for individual variables, as when it

finds the monthly payment for a mortgage, but can also compute equational relation-

ships between non-ground variables, e.g. the linear equation relating principal and

balance.

10

1.2 Problem

In order for CLP languages to be useful, they must enjoy an efficient implemen-

tation, and in particular, compilation should effectively optimize programs to avoid

solving unecessary constraints.

We’ll consider the modes and implementation of the mortgage program in more

detail in later chapters, and for now will work with the smaller problem of computing

margins for page layout.

Even relations using addition as the only arithmetic operation subsume multi-

ple useful functions, and so are sufficient to raise important questions concerning

efficiency of the implementation, in particular use of the solver, necessarily a time-

critical part of any CLP implementation.

1.2.1 Page Layout Using sum/3

Consider the case of the designer building a graphical browser that displays pages

composed of rectangular objects. The objects are to be tiled, that is laid out on the

screen without overlap or gaps, and because they are dynamic in number and extent,

the application must frequently recompute their coordinates.

In particular, for horizontal layout, let there be some sequence of n objects to

be placed between left and right margins, where the margins are some function of

predefined defaults, database preferences, user inputs, and computation from other

program values. The horizontal layout computation for the sequence of objects is

determined by a relation between their horizontal extents, w1, . . . , wn, and the left

and right margins of the sequence, x0 and xn. This relation, x0 +w1 + . . .+ wn = xn,

has multiple uses. For a given sequence of objects, it can be used to determine if they

11

can be laid out within fixed margins, or to compute either of the margins, or even to

find the relation between the two margins.

For commonly available programming languages, each of the above uses requires

a different computation, whether a conditional test, or an assignment to either of x0

or xn, or the precomputation of Σwi for later use. In addition, since the process by

which margins are determined is incompletely specified, it is difficult to decide which

of these computations will be needed for layout.

Ideally, to simplify program design, it should be possible to represent the layout

relation directly as a procedure, without worrying about which case applies. At the

same time, since tiling computations are performed frequently and for many different

objects, this procedure must have an efficient implementation.

The layout relation, x0 + w1 + . . . + wn = xn, constrains the sum of a sequence

of object offsets, the wi, by the margins x0 and xn. This relation can be thought

of more generally as summation within range constraints, and Figure 1.6 gives this

sum/3 relation.

% sum(L, A,S) :- S is the sum of the accumulator A

% plus the elements of L.

sum([], A,S) :- S = A.

sum([X|Xs], A,S) :- T = A + X, sum(Xs, T,S).

?- Offsets = [4,2,5,3,2], sum(Offsets, Lm, Rm).

Rm = Lm + 16

yes

Figure 1.6: CLP(R) Program for Page Layout

12

The sum/3 relation is defined by two clauses, providing a choice at each stage of

clause selection, and through the recursion, a loop as well. The multiple clauses may

be thought of as branches of a case statement, with choice points accumulating in

the program state when execution follows any but the last branch, and backtracking

used as needed to select a satisfiable branch when a constraint is not satisfiable.

Although in this case either clause might be attempted for goal reduction during

execution, the clauses are mutually exclusive, applying to empty and non-empty lists,

respectively, so that if the list argument already has a ground value, only one clause

may succeed. By convention, the use of non-variable arguments in the head is a signal

by the programmer that such deterministic computation might occur, and for the case

where the first argument is ground, implementations typically choose between such

clauses in unit time, and avoid storing choice points that would necessarily fail if

retried. For the useful case, then, where the list length is fixed, as in the example,

sum/3 executes as a loop, and execution time is dominated by time spent checking

and storing constraints.

Both symbolic and numeric equality constraints occur in sum/3: there are list

constraints in the clause heads, using uninterpreted equality to constrain the list

argument to be a cons cell or the empty list, respectively, and also linear arithmetic

constraints, such as T = A + X, where the function symbol + has the traditional

arithmetic interpretation, and the equality relation is defined to be compatible with

the arithmetic symbols, for consistency with the axioms of arithmetic. E.g. for the

variable X, and constants 0, 2, and a, we have 0 + 2 = 2 satisfiable, the conjunct X =

a, X = 0 unsatisfiable, and a + 2 = X not well-formed and so not in the language.

13

An implementation of the sum/3 procedure needs to provide a solver for both of

these constraint domains, a procedure that constructs and accumulates substitutions

for variables occurring in constraints, determining that a constraint is satisfiable if a

consistent substitution can be found, and rejecting it as unsatisfiable otherwise.

1.2.2 Avoiding the Solver for Efficient Loop Computation

As the fundamental unit of computation, checks for constraint satisfiability domi-

nate CLP execution time, and ideally, such time should vary as computation involves

ground values or not, since programs should bear the cost of solver overhead only

when necessary.

An implementation that adds numeric constraints to the solver accumulates state

in a solver database table, the tableau, a sparse system of equations. Although lazy

classification of numeric variables delays and may reduce the number of solver oper-

ations on the tableau, still for equations with arithmetic function symbols, or where

some of the occurring variables are already in the solver, new solver rows must be cre-

ated. Consider the goal from Figure 1.6, sum(Offsets, Lm, Rm), applied to the sum

program to either find an answer substitution, here Rm = Lm + 16, or else determine

that the query is not satisfiable; and in addition its expansion in Figure 1.7, where

we have renamed the variables X, A and T to Xi, Ai, Ai+1 and An to indicate loop

indexing, and depicted the tableau as an augmented matrix. We see that though the

margin and constant bindings are stored outside the solver, the arithmetic equations

of the form Ai+1 = Ai + Xi each cause the creation of a new solver row, so that a

chain of variables accumulates in the solver.

14

sum([], An,S) :- An = S.
sum([Xi|Xs], Ai,S) :- Ai+1 = Ai + Xi, sum(Xs, Ai+1,S).

?- sum([4,2,5,3,2], Lm,Rm)

constraints solver tableau
A0 = Lm
X1 = 4
A1 = A0 + X1 A0 −A1 4
X2 = 2
A2 = A1 + X2 A1 −A2 2
X3 = 5
A3 = A2 + X3 A2 −A3 5
X4 = 3
A4 = A3 + X4 A3 −A4 3
X5 = 2
A5 = A4 + X5 A4 −A5 2
A5 = Rm

Figure 1.7: Program, Query, and Accumulated Constraints for sum/3

1.2.3 Problem Statement

In order for CLP languages to be useful, they must afford efficient implementation,

and in particular, solver operations should be used only where needed, so that only

those programs that need the greater flexibility of relational computation pay for it.

Declarative systems naturally tend to represent loop state as chains of variables,

whether as stack frames, or as coefficients on the diagonal in a system of equations,

and the time costs are significant compared to imperative languages that can reuse

variables during iteration.

Although a CLP system may need to record numeric computations as constraints

in the tableau for the general case, this is unnecessary when those constraints are

15

only temporary values in a loop. Numeric constraint threads in loops increase the

running time by a large constant factor, and, wherever possible, should be moved out

of those loops by compile time optimization.

Thus the problem I wish to attack in this thesis is: Standard implementations of

CLP languages lead to unecessary and time-consuming constraint threads in loops.

1.3 Approach

The process of avoiding unecessary solver computation is the essence of CLP-

specific optimization, and such optimizations need to be both correct, so that the

logical semantics is not lost, and effective, so that we can be certain that there is a

speedup.

We would like to replace constraint satisfiability tests in loops with ground com-

putation using the basic operations of the underlying hardware. Let’s see how this

would work for the example.

1.3.1 Page Layout Continued

During execution the constraints occur in a regular pattern, a chain, or thread of

constraints. This symmetry should be exploited, and the operational reading suggests

how we can do so. In addition to the clear declarative meaning, the sum query also has

distinct procedural interpretations for the various argument modes. Given the ground

list argument and its total, the translations to imperative code share an accumulating

loop S := 0; for each X in [4,2,5,3,2] S := S + X to find the total 16, and

then for the four cases as the Lm and Rm are both, either, or neither bound, there

is either additional code, one of: the test Rm - Lm = 16, for both ground, or either

of the two assignments Rm := Lm + 16 or Lm := Rm - 16 to compute the unknown

16

margin from the other; or else in the last case, with neither margin known, an implicit

result, not represented in code unless stored in specialized data structures, the fact

that the pair (Lm,Rm) is a half open interval related to the range 16 by the difference

Rm - Lm.

There are two points to note here: the first, as noted in § 1.2.1, that the single CLP

program subsumes all four of the imperative codes into a single, elegant representation

with a clear declarative meaning; and the second, of more interest for optimization,

that the imperative implementations have a common, efficient code fragment, the

loop to accumulate the list sum, and we would like the CLP program implementation

to achieve this efficiency as well.

A thread optimizing compiler uses imperative arithmetic within a loop for ground

lists of addends, and the more general form when the list includes variables. For

the sum/3 example, the optimized code consists of an accumulating loop, the code

fragment S := 0; for each X in [4,2,5,3,2] S := S + X mentioned previously,

and the constraint Rm = Lm + S to follow, so that a hybrid combination of imperative

and declarative code is generated, with the result that the calls to the solver are

hoisted out of the loop. The thread optimizing implementation avoids storing the

intermediate Ai in the constraint store completely, instead maintaining a sum S as

an external total, and finally creating the constraint Rm = Lm + S outside the loop.

The variable Ai is in essence an induction variable, a loop accumulator that can and

should be stored in constant space, using far less time. The query sum([4,2,5,3,2],

A,S) is a thread of computation, and moving solver calls out of the loop is the goal

of the thread optimization.

17

1.3.2 Approach of the Thesis

In order to understand and classify the important opportunities for imperative

computation that occur in CLP implementations, we focus on loops, and in particular,

the chains of constraints that lead to banded patterns in the solver.

If, for a loop with constraints in the body, there is some efficient higher-order

operation to accumulate constraints through ground computation into some compact

form, with the resulting constraint used later to relate only those terms visible outside

the loop, many constraints may be replaced with one, at a considerable savings in

solver computation. This is the thread optimization, the subject of this dissertation.

Given an understanding of these constraint threads, we define rewrite rules to more

clearly express the hidden imperative computation; compare the solver computation

to the imperative form to determine the potential improvement in efficiency; and

apply the translations to example programs, compiling the result in order to confirm

the expected speedup.

An implementation of the thread optimization for a CLP system consists of

compile-time analysis; source translation; and improved code generation to perform

ground computation using the underlying hardware. We modify an existing CLP

compiler, CLP(R), to add the analysis, translation and code generation phases, and

run timing tests to determine the actual speedup.

By applying thread optimization to CLP programs, we detect an important class of

potentially deterministic computation and remove the unecessary solver computation

that ordinarily results, reducing the gap in performance between Prolog and CLP

systems for numeric computation.

18

1.4 Contributions

The thread perspective spans declarative and operational viewpoints, so that it

allows the full power of the mathematical theory underlying the solver to be brought

to bear on optimization, and at the same time suggests the imperative computation

to be used to implement translations.

It brings to static analysis for CLP programs both a new specificity, with a focus

on loops computing functions, and generality, with the possibility of using algebraic

transformations to create deterministic computation rather than only uncovering it.

This thesis makes a number of contributions to CLP optimization. It defines a

broad class of CLP language optimizations, the thread optimizations, which apply

to a wide variety of recursive procedures, and to any practical CLP language; proves

their correctness within the CLP scheme of Jaffar and Lazzez [JL87]; gives instances of

constraint threads for numeric constraints; describes an implementation of the thread

optimization of numeric constraints, for an instance of the CLP family, CLP(R); and

demonstrates that this implementation achieves a significant speedup for optimized

programs.

1.5 Related Work

Work on CLP(R) optimization includes future redundancy [JMM91, Mic94], dead

variable elimination [MSY93], constraint removal [MS93], goal reordering [MS93], and

benchmark comparisons of various optimizations [KMM+99]; we will say more about

these at appropriate points in later chapters.

19

CHAPTER 2

Constraint Logic Programming

Before considering the thread optimization in the next chapter, we first provide

background on CLP opmization from the viewpoints of the programmer, implementer,

and researcher. We illustrate fundamental efficiency issues in CLP programs with

queries to the mortgage program, in § 2.1; follow with logic programming concepts

that have a close bearing on CLP compiler optimization in § 2.2; continue with a

sketch of the CLP(R) system architecture in § 2.3; list other, more modern systems

that, unfortunately, were either not suitable or available as a testbed for implemen-

tation, in § 2.5; and finally review work on CLP optimization in § 2.4.

2.1 The Mortgage Program Example

Although in the ideal case we can understand CLP programs purely through the

logical reading, the programmer concerned about termination and efficiency must also

consider implementation issues. CLP systems are incomplete, as backtracking fails to

terminate, or nonlinear constraints occur in the answer projection, and backtracking

or nonlinear delays add significantly to both time and space cost.

The mortgage program illustrates how these problems depend on the mode of the

query. Although there are 32 modes as each of the five arguments is ground or not,

20

we can summarize with four cases, as queries fail to terminate; provide non-linear

constraints in reply; compute useful linear results; and perform uncertain tests due

to the use of floating point arithmetic.

For all but trivial cases, we can group the modes as follows: T non-ground leads to

non-termination; I non-ground, to nonlinear constraints; and tests, with all ground

arguments, to almost certain failure, due to the inaccuracy of floating point arith-

metic. For other queries, using various combinations of ground and unbound {P, R, B},

derivation succeeds.

The result is that for the 32 possible modes, we lose 24 where the time period or

interest rate is non-ground, and one for the test with all arguments ground, leaving

seven useful calling patterns. This is not ideal, but considerably better than the one

calling pattern allowed by Prolog-style computation.

Figure 2.1 lists the mg/5 procedure, using underscores for “don’t care” variables,

while Figure 2.2 gives some queries and their results. We’ll first consider the working

modes, and then review the problem cases.

2.1.1 Successful Queries

Figure 2.2 gives seven examples where queries to mg/5 succeed, as any one or more

of the variables {P, R, B} are unbound, for the case where the time period and annual

interest rate are fixed at thirty years and 7.5%, or 0.625% a month for 360 months.

Using $100, 000 as a conveniently round number for the principal, and paying off

the mortgage completely, the answer substitutions to the first four queries tell us

that: the monthly payment is almost $700; such a monthly payment does indeed pay

21

% mg(P, T, I, R, B) <- For principal P and monthly interest rate I,

% B is the balance after T months given a monthly repayment of R.

mg(P, T, I, R, B) :-

T > 0,

A1 = P * (1 + I) - R,

A2 = T - 1,

mg(A1, A2, I, R, B).

mg(P, T, _, _, B) :-

T = 0,

B = P.

Figure 2.1: The Mortgage Relation

down the mortgage to zero, with a roundoff error of less than a dollar; and each dollar

borrowed requires $0.00699215, or about .7 cents, to be repaid each month.

For the last three successful queries we relax the constraint B = 0, that there be a

zero balance after 30 years. In addition, when interpreting the answers, it’s convenient

to note the break-even monthly repayment rate per dollar, R$ = 0.00699215, and

the compounding factor, cf = 1.00625360 = 9.42153, since R$, cf , and R$/cf =

0.000742145 appear as coefficients.

We may rewrite the answer substitutions for the fifth query as B = cf(P−100000);

the sixth, as B = cf(100000−R/R$); and the full ternary relation without projection,

as B = cf(P − R/R$).

Of course the projection operation for the answer substitution fails to rewrite the

results to the form above. The important point here is not the format of the output,

but that it was all produced by the same predicate mg/5, and that a design including

22

Example Query Answer Substitution or Result
1 ?- mg(100000, 360, 0.0625, R , 0.0). R = 699.215

2 ?- mg(P , 360, 0.0625, 699.215, 0.0). P = 100000

3 ?- mg(100000, 360, 0.0625, 699.215, B). B = -0.662198

4 ?- mg(P , 360, 0.0625, R , 0.0). R = 0.00699215* P

5 ?- mg(P , 360, 0.0625, 699.215, B). B = 9.42153 * P - 942154

6 ?- mg(100000, 360, 0.0625, R , B). R = -0.000742145*B + 699.215

7 ?- mg(P , 360, 0.0625, R , B). R = -0.000742145*B + 0.00699215*P

a ?- mg(100000, 360, 0.0625, 699.215, 0.0). no (roundoff error)

b ?- mg(100000, 2, I , 699.215, 0.0). maybe (nonlinear constraints)

c ?- mg(100000, T , 0.0625, 699.215, 0.0). ... (stack overflow)

Figure 2.2: Queries to the Mortgage Relation

calls to mg/5 would have no need for the algebraic manipulation above, or even to

distinguish any of the seven cases.

2.1.2 Issues with Correctness and Completeness

The other modes for mg/5 are subsumed by three cases, as all arguments are

ground, the interest rate I unbound, or the time period T unbound.

The corresponding pre modes are mg(+,+,+,+,+), mg(?,?,-,?,?), and mg(?,-,?,?,?),

and queries for these modes are unsuccessful, failing either to recognize values in the

mg/5 relation, to decide nonlinear constraints, or to terminate.

CLP(R) is incomplete for tests due to floating point error, for nonlinear constraints

due to the linear solver, and for infinite proof trees due to the fixed top-to-bottom

selection rule for clauses, which leads to depth-first search.

2.1.2.1 Floating Point Comparisons

Floating point arithmetic is inexact, and most likely to reveal its flaws for recur-

rence relations with many terms, as when the time period T is nontrivial.

23

Recall that there was a roundoff error of a dollar or less in queries three and five

of Figure 2.2. This roundoff error leads to failure for the test query a in Figure 2.2,

which should succeed.

In practice, only simple goals are used for tests, where all arguments are ground.

Calls to non-trivial user-defined predicates such as mg/5 ordinarily have at least one

argument non-ground, so that the case above is not a serious problem in practice.

2.1.2.2 Nonlinear Constraints

The constraint P1 = P * (I+1) - R is nonlinear for unbound P and I, but in ad-

dition, even for ground P, the answer substitution includes nonlinear constraints for

T>1. E.g. the query mg(100, 2, I, 50, 0.0) is satisfiable with I=0.0, but the an-

swer substitution is 50 = (100*I + 100) * (I + 1), followed by maybe, indicating

that the constraint may or may not be satisfiable. Successful queries to the mortgage

program, then, must have I ground, outside of the trivial case of T ∈ {0, 1}.

Solving nonlinear real constraints is time-consuming, and CLP(R) simply delays

such constraints in the hope that they will eventually become linear as included terms

are bound. Nonlinear constraints remaining in the answer substitution are simply

dumped out, followed by the noncommittal “maybe”.

2.1.2.3 Rule Selection

In the predicate mg/5, termination is controlled by the loop counter T, and for

modes where that counter and any other argument are both unbound, there is an

infinite loop as the recursive rule continues to match.

Given a fixed selection order for rules, here top-to-bottom, we can delay the re-

cursion by re-orering the rules to put the base case first, as is traditional for other

24

languages. The modified predicate is able to non-deterministically generate tuples,

though these are of little use, as there are too many to be useful. Generators are

useful for symbolic or finite domains, and not otherwise.

There are two basic problems with queries computing the time period T: the

relation between T and the other parameters is nonlinear, and T is restricted by the

increment and base case constraints to integer values.

Since the variable T is related to the other arguments only as an exponent, by the

term (I + 1)T , we are unable to use an explicit linear equality constraint to directly

relate T with the other variables in the recursive rule, in order to detect when T has

grown too large. In addition, since queries to compute the loop limit are in effect

solving integer constraints from real inputs, we must necessarily consider how small

an epsilon is allowed before a real number is considered equal to an integer. Since we

prefer incomplete to unsound derivations, and we must choose one or the other when

floating point errors accumulate, we can expect some equality tests to fail when they

should logically succeed.

In practice, most loops in CLP programs must still have ground initial values for

loop counters when those loops include non-trivial arithmetic constraints. Placing

the recursive rule first in mg/5 may be seen as a signal from the programmer that the

counter T should be ground.

2.2 CLP Programming Concepts and Idioms

Clause indexing and accumulator passing style represent popular and significant

programming idioms that have a significant bearing on CLP implementation. Both

25

depend on the notion of groundness, as indeed do many other opportunities for CLP

optimization, such as the thread optimization that is the subject of this dissertation.

2.2.1 Groundness and Modes

A completely bound term is said to be ground. More precisely, a ground term is

a constant symbol, a function symbol with ground arguments, or a ground variable,

where a ground variable is one bound to a ground term. We also refer to the mode

of a term, + for ground, - for unbound, and ? for unknown or don’t care. We use

a tuple of such symbols to give a mode description for a goal, or mode declaration

for a predicate, e.g. the successful queries of Figure 2.2 have one of the modes in

mg(?,+,+,?,?). When we simply refer to the mode of a procedure or goal, as above,

we are referring to the initial mode of the arguments, prior to or at the very start

of a call. Some of the arguments to a procedure call may become ground as the

result of that call, so that the initial and resulting modes differ, and when we wish

to distinguish the two cases, we refer to the initial mode as a pre mode, and the

result, as a post mode. Most often, however, with our focus on the initial condition,

we simply speak of the mode without any qualifier, and in practice the meaning is

typically clear from the context.

2.2.2 Determinism, Backtracking, and Indexing

An SLD derivation [Kow74] given a definite clause program for some query begins

from an initial state and consists of some number of derivation steps, either infinite

or leading to one of two states, a current clause also the empty clause [], success, or

a current clause with selected literal for which no complement can be found, failure.

26

A current clause with exactly one available program clause for resolution is said to

be deterministic, and a sequence of such steps, to be deterministic computation.

The process of selecting another rule for resolution with the current clause is

known as backtracking. Backtracking may be shallow, where no binding state need

be undone, or deep, where we return to a previous choice point.

The root function symbol of a term tree is known as the principal functor for that

term. Given a procedure with multiple rules, and with the initial argument partially or

completely ground, so that the principal functor is known, standard implementations

use a case switch to select rules, and this is referred to as indexing.

Typical CLP implementations pass arguments in registers, and with a caller saves

protocol, so that during a deterministic call to a procedure, the current environment

may be discarded prior to the last goal. When this is done, the implementation is

said to perform last call optimization, or more briefly LCO. This is a generalization

of tail optimization, and in the case where the last goal is a recursive call, the result

is exactly what we expect from tail recursion optimization; iteration occurs without

stack growth.

The resulting saving in time that would be otherwise be required to save stack

frames in choice points is typically significant, and the compiler implementor may

reasonably expect programmers to write procedures to take advantage of indexing

where ever possible.

The entry point provides a case switch to index over N if it is ground, falling

through to the default otherwise. For a procedure with many mutually exclusive

clauses, such indexing over a ground first argument would give deterministic, unit

27

time selection of the appropriate clause, so that there would be no need to store

choice points, and both time and space would be saved.

Indexing is on the principal functor of the first argument, either a structure or

constant, e.g. indexing distinguishes between a cons cells [|] and the empty list

[], but f(a) and f(b) are distinguished by sequential testing at runtime.

2.2.3 Accumulator Pairs

In CLP programs, accumulator passing style for numeric parameters is an idiom

that can be recognized at compile time, and signals the existence of constraint threads.

Definition of the thread optimization is greatly simplified by first considering this well

known logic programming idiom. Accumulator pairs are a fundamental programming

technique [O’K90] [FH88] for declarative language programming, as an alternative to

side effects. Such pairs show up in the implementation of the most basic procedures,

e.g. append/3 appears in Lisp 1.5 [MAEL65] and Marseilles Prolog [Kow88], and are

ubiquitous in logic programs as a means to represent state.

As the name implies, their use is to build or accumulate values; since both pair

members have the same type, the result of one call can be used as the initial value of

another, thereby threading a sequence of state values together, e.g. p(A,B), p(B,C).

They are particularly useful in recursive procedures, where accumulator pairs play

the role of induction variables for imperative loops, so that a pair captures initial and

final values from a loop iteration.

By the dual reading, accumulator pairs establish a relation between the pair mem-

bers, while also providing a general technique for representing imperative operations

in a logical framework.

28

In the general case, accumulator pairs might be defined simply in terms of the

constraint chains that occur during execution. For our purposes, however, we are only

interested in numeric variables found in well-behaved loops, and so adopt somewhat

more restrictive criteria in Definition 2.1, using the modes of the pair variables.

Definition 2.1 (Symmetrical Modes and Accumulator Pairs)

Let a predicate have two numerically typed arguments A and B, without loss of gener-

ality the trailing arguments, and let all pre modes with ground A have post modes with

ground B, so that mode(pre, p(. . . , +, ?)⇔ mode(post, p(. . . , +, +). Then A grounds

B, and if B also grounds A, we say the two arguments have symmetrical modes. We

generalize to sets of variables in the obvious way, so that if there is some subset of the

argument variables partitionable into two sets that ground each other, again we say

that those sets have symmetrical modes. A subset of the numeric argument variables

partitionable into two equally sized subsets having symmetrical modes is a numeric

accumulator pair.

An example of a predicate written in accumulator passing style is given in Fig-

ure 2.3. In the sum/3 relation, the numeric variables (A,S) form an accumulator pair;

they are equated in the base case, and for pre mode sum(+,?,?), where the initial

argument is a ground list, the pair variables have symmetric modes.

2.3 A Sketch of the CLP(R) Runtime and Compilation Ar-

chitecture

A CLP language is a first order language with equality, restricted to completed

general clauses, and including the symbols needed to express programs in some domain

of interest.

29

% sum(L, A,S) <-

% S is the sum of the accumulator A and the numbers in the list L.

sum([], A,S) :- A = S.

sum([X|Xs], A,S) :- P = A + X, sum(Xs, P,S).

% The procedure sum/3 includes a pair of symmetrical modes.

:- mode(pre, sum(+,+,-)), mode(post, sum(+,+,+)).

:- mode(pre, sum(+,-,+)), mode(post, sum(+,+,+)).

Figure 2.3: An Example of Accumulator Passing Style

A CLP system is constructed from two algorithms, a theorem prover based on

the resolution principle, and a solver to decide some constraint theory. The primitive

operations of the theorem prover correspond to SLDNF resolution steps, and of the

solver, to constraint satisfaction tests.

2.3.1 The CLP(R) Solver

Once given the domain and language, the solver interface is defined by the solver

operations, and the interactions, if any, between those operations and goal selection.

2.3.1.1 The Solver Interface

For linear real arithmetic, to prove satisfiability, we use gaussian elimination for

equations, and first-phase simplex for inequations. With gaussian elimination, satisfi-

ability is ensured as long as our system of equations does not include a contradiction

c = 0, with c a non-zero constant, while the first phase of the simplex algorithm

determines that the bounded region is non-empty.

30

In a final step during computation, the solved form is computed using back-

solution for equations, and some form of Fourier elimination for inequations. In

practice this solved form is projected against some subset of variables of interest,

typically those occurring in the original equations, so that intermediate variables are

eliminated where possible.

The most elementary constraint operation adds a primitive formula to the store,

θ1 ∪ c = θ2, which begs the question of whether the result is consistent; and so as a

necessary complement, we also need to be able to test for satisfiability, test(θ,c).

The need for a groundness guard, e.g. to avoid unbounded expansion during list

traversal, ¬var(L), L = [H|Tl], suggests another basic operation, subsumption, to

determine whether a set of constraints entails another, θ → c, or ask(θ,c) [Hen91].

This suggests the complementary tell(c, θ1,θ2) as an alternative name for add/3;

and still requires test/2, else the constraint store become inconsistent, and all ask

operations trivial. We’ve also seen that useful systems must be able to simplify the

constraint store for output, by projecting the current substitution with respect to

some term. We identify, then, four useful solver operations, test/2, ask/2, tell/3,

and project/3 [JM94].

2.3.1.2 Delay

For the solver operations, we can furthur distinguish ask/2 between blocking and

non-blocking cases, the first preserving the dual reading, and the second intrinsically

operational.

Another name for blocking is delay, so that a delay mechanism [Nai85] can be used

in place of guards. Delay, then, compensates at runtime for otherwise fixed selection

31

rules, and is useful for a number of reasons: to test negated goals for eligibility; mode-

limited procedures for safety; blocking guards for subsumption; and to compensate

for limitations of the solver algorithm.

In most cases, goal eligibility simply depends on the degree of groundness, e.g.

completely ground for NAF, or linear for multiplicative constraints in CLP (RLin).

Adding delay to the interpreter requires the addition of delay sets for ineligible

goals; new procedures for the delay and wake operations; and calls to those operations

in the goal procedure. An accumulator pair is added to parameter lists, consisting of

two delay sets, one initially empty, and the other finally empty or not, as the derivation

succeeds or flounders. In the goal procedure, for delayable goals, an eligibility test

is made prior to testing for satisfiability, with ineligible goals added to the delay pair

instead; and for constraints, a call to the wake procedure is made after the addition of

constraints to the solver, to check whether any of the delayed goals have eligible and

should be woken. The delay and wake operations need specialized data structures to

cross reference variables and goals, since the wake test is made every time a constraint

is added to the solver [JMSY92b].

Early constraint systems [SS80] [Bor81] used delay to implement local propagation,

where goals are delayed until they are directly evaluable, either conditional, with all

subterms ground, or functional, with all subterms but one ground, and that one

having only one possible value. Local propagation in effect replaces the solver with

the delay mechanism, the constraint operations with imperative computation, and

the constraint store, with the delay sets and their bindings into ordinary memory.

Delayed operations call out for more powerful constraint domains, and there is

no need to limit the constraints in these domains to equality. In CLP (RLin) the

32

primitive inequality relations offer constructive negation for numeric equality, allowing

us to avoid negation as failure, or NAF, for numeric constraints, since disjunctive

inequalities express numeric inequality directly, e.g. ne(A,B) :- A < B. ne(A,B)

:- A > B, and in addition the disjunction is not always necessary, e.g. in the guard

to a loop, strict inequality is probably more useful than negation, so that for(I,N)

:- I < N, for(I+1,N) is preferred to for(I,N) :- not (I = N), for(I+1,N).

Delay mechanisms and powerful constraint domains both substitute for and com-

plement each other, since as new constraint primitives replace some cases of delay,

the more powerful language exposes limitations of the solver algorithm, and new op-

portunities for delay. E.g., delay for nonlinear constraints converts CLP (RLin) to

CLP (R), admittedly incomplete, yet much more flexible.

2.3.2 CLP(R) Compilation

Abstract machine architectures simplify the compilation of declarative language,

providing an intermediate step between interpretation and native code compilation.

David H. D. Warren’s abstract machine, the WAM [War83] provides an abstract

instruction set implementing SLD resolution and unification, and so a target machine

architecture for the compilation of Prolog. Specialized constraint domains mesh nat-

urally with uninterpreted equality in the WAM, with finite tree variables serving as

pointers into the constraint store, and the WAM has served as the starting point

for the implementation of a number of CLP systems [Car87] [NJ89] [BCM89] [DC93]

[CD96], including CLP(R) [JMSY92a] [JMSY92b] [Mic92]. Descriptions of the WAM

include [AK90] [AK91] and [Roy94], while [JMSY92a] extends the WAM with con-

straint instructions for the CLAM, the constraint logic arithmetic machine.

33

The procedural reading of Horn clauses illuminates the WAM design. Under this

interpretation, clauses are switch cases; predicates, procedures; queries and goals,

procedure calls or primitive machine operations; clause head variables, procedure

parameters; and newly introduced variables in clause bodies, local variables. The

procedural reading also suggests that accumulated substitutions be viewed as envi-

ronments; and both choice points and accumulated queries, as continuations, with

the current query and most recent choice point, the success and failure continuation,

respectively.

The WAM specifies design choices and optimizations that critically affect perfor-

mance [AK90] [AK91]. The fundamental design decisions include the use of structure

copying rather than structure sharing for terms; a number of stacks, the call, choice

point, heap, and trail; and a callee saves policy, plus the use of registers to pass

parameters. The optimizations include the storage of temporary variables on the

call stack rather than in the heap; a generalization of tail optimization, the last call

optimization; and clause indexing on ground first arguments.

Briefly, the compiler avoids interpretive overhead by compiling goals to procedure

calls, so that there are instructions to put and get arguments, push and pop stack

frames, jump to a procedure, and return from it. Procedures have multiple entry

points, corresponding to clauses, and there are switch and indexing operations to

manage selection of these entry points.

Most of the arithmetic constraints are tested for satisfiability by assembling and

then solving a parametric form, where a parametric form is a sequence of linear terms.

For each parametric form, CLP(R) maintains the invariant that a program variable

appears in exactly one term of the form, so that other terms must be composed

34

of constants and parameters that are not visible outside the solver. E.g. in c0 +

c1X1 + · · ·+ ciVi + · · · cnXn, if Vi is a program variable, then the X1 . . .Xn are solver

parameters distinct from the variables of the program.

2.4 Selected Techniques for CLP Optimization

The CLP(R) architecture is based on the WAM for symbolic constraints and

procedure goals, and so benefits from the optimizations built into its design, such as

indexing and LCO. Since flow of control is by selection of continuations constructed

from branches of the proof tree, both goals and choice points are built on and popped

from stacks, or simply one interleaved stack. Since a CLP system architecture must

provide an efficient implementation of SLD resolution steps, procedure calls should be

efficient. Arguments are passed in registers, and the general case of call/return pairs

between procedure entry points and previously saved return addresses is converted

to jumps where possible. Since procedure bodies consist of an outermost case switch,

switch arms are selected by indexing rather than sequential testing when they are

known to be mutually exclusive. Finally, since equality is fundamental, used to bind

parameters, test conditions, and compute results, the implementation of equality

goals is specialized to the various cases.

2.4.1 CLP(R) Optimization

The CLP(R) system [JMSY92b] checks for ground constraints as a special case

at runtime, so they may be solved outside the solver, but detecting such special cases

during compilation is even better. Abstract interpretation [Jø92] may be used at

compile time to find ground computation occurring anywhere in a CLP program, yet

35

is necessarily approximate. The thread optimization not only detects ground com-

putation at compile time, but actually creates it, since the use of a ground indentity

value insulates the loop from external constraint chains, e.g. zero as an initial value

for the summation in sum/3.

Other work on CLP(R) optimization includes dead variable elimination [MSY93],

goal reordering [MS93], pre and post modes, [BKM95], and, most recently, benchmark

comparisons of various optimizations [KMM+99].

2.4.2 Linear Threads of Computation

The thread optimization is related to previous work. It makes use of multiple

specialization, [Win89] [Win92], in the wrapper procedure, outside the optimized loop,

and constraint removal [MS93] within that loop. The notion of recursion patterns,

which serves as a starting point for the procedure level analysis, is related to the

work of [SK93] on skeletons and techniques. The analysis uses a simplified form of

abstract interpretation [Jø92] restricted to individual clauses, and the next phase of

the optimization after analysis is an example of source-to-source translation, which is

a mature technique borrowed from the functional programming language community

[Lov77].

The use of affine transforms to summarize numeric constraints within a CLP pred-

icate is new, as is the thread optimization itself, which replaces transform application

with composition. The great difference between the thread optimization and earlier

approaches is, one, that it is synthetic rather analytical, creating ground computation

by means of algebraic identities rather than searching for it via necessarily incom-

plete analysis; and two, that it converts entire loops to imperative computation, and

36

so enables the furthur application of all the traditional optimizations used to compile

numeric loops to efficient machine code. The thread optimization breaks through a

critical barrier separating recursive CLP predicates from efficient procedural loops.

Composition of affine transforms extracts the great majority of the ground com-

putation from a numeric CLP program. It subsumes local propagation, and the

requirement for equally dimensioned argument and result vectors naturally focuses

on stable loops, which provide the greatest opportunity for optimization.

In addition to linear recursive loops, threads of computation may also occur in

procedures with multiple recursive calls. Other multiply recursive procedures, how-

ever, have more complicated dataflow, e.g., transforms may be copied before calls,

and summed afterwards; these tree-structured patterns of are referred to as spread-

gather computation. In order to accumulate transform terms for such procedures,

right distributivity and transform inverses may be needed.

2.5 Modern CLP Systems Beyond CLP(R)

The proof of compiler optimization is in the execution, which requires implemented

systems. CLP(R), which provides linear numeric equality and inequality constraints,

was chosen as the implementation system because of its efficiency, providing a de-

manding target for optimization, and second and most important, because source

code was available without license fees.

Other more modern CLP systems, in particular HAL, are of interest as future

vehicles for the thread optimization, but are not yet appropriate for implementation

by researchers outside of the original development groups.

37

2.5.1 Mercury

Mercury [SHC96] adds type inference and type, mode, and determinism declara-

tions to Prolog, removes full unification by prohibiting unbound variable aliasing, and

as a result of the complete type and mode information and the freedom to specialize

unification to matching, achieves execution speedups of several times over modern

Prolog systems.

Mercury is covered under the GNU Public License, the GPL, and so is widely

available; uses GNU C as a backend, and so is widely portable; and serves as the

target language for Hal, a new CLP system, about which more later.

2.5.2 GNU Prolog

GNU Prolog [Dia00] provides finite domain integral constraints in a full Prolog

system. Finite domain variables are sets of natural numbers, restricted to some pre-

determined maximum to ensure decidability, and are useful for integer optimization

problems.

GNU Prolog illustrates the trend to include additional constraint domains beyond

uninterpreted equality in Prolog systems, and is available under the GPL.

2.5.3 HAL

Hal [DdlBH+99] includes a core subset close to Mercury, and module facilities for

solver implementation and constraint operator export. Currently Hal includes solvers

for real, integral finite domain, and unification constraints.

The Hal system appears to be a promising implementation on which to test CLP

optimizations, since new solvers can be plugged in, compared, and modified. The close

38

ties to Mercury mean that there are strong mode, type, and determinism declarations.

It has not yet been released.

39

CHAPTER 3

Affine Transform-Based Analysis of Loop Bodies

Consider the new opportunities for CLP optimization that are created by the use

of numerical constraints. By the dual reading, program-defined goals are similar to

imperative procedure calls, and therefore subject to the same optimizations, such

as passing arguments in registers, and replacing call/return sequences with jumps

for the last call in clause bodies. The primitive constraints, on the other hand, are

analogous to primitive machine operations, but typically require calls to a solver.

CLP languages, then, add a new challenge to high-level language optimization, that

of replacing solver calls by ground computation.

Our goal is simply stated, to not only find, but also create, ground computation,

focusing on loops. Finding ground computation clearly eliminates solver overhead;

creating it eliminates even more; and focusing on loops restricts analysis effort to

where it provides the greatest payoff.

Logic programming optimization typically works by exploiting determinism, and

with the thread optimization the determinism consists of the necessarily satisfiable

constraints that occur within a thread of numeric computation. The thread opti-

mization computes a composition of loop body constraints by imperative operations

within a loop, and then stores the accumulated constraint with a solver call outside

40

the loop. Since solver operations are expensive in both time and space, there can be

a substantial speedup as calls to the solver are moved out of the loop.

This chapter considers the most fundamental case of the thread optimization,

recursive procedures having only a single base and recursive rule, with only primi-

tive constraints beyond the single recursive call, thereby considerably simplifing the

recognition and optimization of threads.

Chapter 4 extends the analysis to recursive procedures in general, while Chapter 5

justifies the claims made here for the properties of the linear algebra operators we

use, and gives proofs for the various forms of the thread optimization, considering

preservation of success, failure, correctness, and length of computation.

3.1 Analysis of Threads of Computation

Some procedures add numerical constraints to the solver in a predictable pattern,

using far less than the full power of the constraint solver. In particular, during

recursion, if a linear constraint includes a new variable, it is necessarily satisifiable;

and if that variable is used in exactly one additional constraint, during the next

iteration, where yet another new variable occurs in this following constraint, then

a chain of constraints is formed in the solver, and only the ends of that chain, an

accumulator pair appearing in the original call, are observable.

We refer to these chains as threads, about which more in § 3.1.1, and use affine

transforms to define the operators that create such numeric threads of computation,

in § 3.1.2.

41

3.1.1 Introducing The Thread Translation

Consider a CLP procedure P , defined by mutually exclusive base and recursive

clauses, with P written in accumulator passing style, and where all goals other than

a single recursive call are primitive constraints; by the dual reading the procedure is

also a loop with only local computation in the body, observable either as failure, or as

useful computation consisting of bindings to the procedure arguments threaded over

each iteration.

% sum(L, A,S) <-

% S is the sum of the accumulator A and the numbers in the list L.

sum([], A,S) :- A = S.

sum([X|Xs], A,S) :- P = A + X, sum(Xs, P,S).

Figure 3.1: sum/3 Has Both Accumulator and Thread Pairs

We distinguish two pair relations for these variable bindings, thread and accumu-

lator pairs. When, as often occurs, a chain of constraints is threaded through the same

argument position from head to call of the recursive rule, and distinct variable names

are used for the head and call arguments, then the two variables form a thread pair.

Accumulator pairs, encountered previously in Definition 2.1, relate variables in the

head, while thread pairs relate a head variable with the same index argument of the

call; accumulator pairs are signalled by equalities in the base case, and thread pairs,

by equalities in the recursive case. E.g., in the recursive rule of sum/3, Figure 3.1,

the thread pair (A, P) has argument index 2 and forms part of a thread relating the

variables of the accumulator pair (A, S), with argument indices 2 and 3, while in the

base case there is an identity A = S binding those same arguments to each other,

42

with the effect that there is a chain of equality constraints from head to call to base

case, and back.

Focusing on the computation represented by the thread pair variable bindings, and

assuming that the computation is separate from loop control, we note that additional

pair variables are related in the solver at every iteration, and yet only the variables in

the original call are visible. This suggests that redundant computation is performed

during the repeated calls to the solver, and that we should consider the nature of the

per-iteration thread operations, and what characteristics they must have to allow us

to avoid the solver calls within the loop. Definition 3.1 describes such well-behaved

thread constraints, and suggests how those constraints may be removed from the loop.

Definition 3.1 (Threads, and the Thread Translation)

A logic program thread is a sequence of constraints relating an accumulator pair of

variables ṽi and ṽf by operators, the thread steps fi, each total over a common domain

α. For fi defined by ground terms, the thread translation composes these thread steps

to an accumulated result with which to relate the accumulator pair variables in a

single, following step.

For n thread steps f1 . . . fn of type α→ α operating on some initial value ṽi, and

where I is the identity function for α, the thread is ṽf = fn . . . f1ṽi, the operator

accumulator pair will have the value (I, fn ◦ · · · ◦ f1), and the thread translation is

ṽf = (fn ◦ · · · ◦ f1) ṽi.

For the case of P , above, where the accumulator variables are numeric, and letting

f0, f1 and f2 define the pair constraints in the base clause, prior to the recursive call,

and following it, respectively, then any terminating successful call is also a constraint

43

between ṽi and ṽf , a thread where ṽf = f2 . . . f2f0f1 . . . f1ṽi. In this case the thread

translation consists of replacing the accumulator pair variables (ṽi, ṽf) with an accu-

mulator pair of thread operators (I,F) in the clause heads of P , replacing thread con-

straints in clause bodies by operator composition, and wrapping an application of the

thread composition around calls to P . Given ground coefficients defining the identity

element and functions fi, and by the assumption of deterministic loop computation,

the composition may be performed directly using the basic numeric operations of the

underlying hardware, outside the solver, so that the solver calls originally within the

loop are replaced by ground operations calculating F = f2◦ . . .◦f2 ◦f0◦f1◦ . . .◦f1◦I.

The accumulated composition may then be applied to the initial state in a single step

outside the loop, ṽf = F(ṽi), reducing the number of solver calls from O(n) to O(1).

The case of P above illustrates the simplest form of the thread optimization for

loops, though limited by a number of assumptions. For P , we are given termination,

success, the independence of the loop control from the pair relations fi, and for those

pair relations, that they are also functions sharing a common type α → α, so that

composition is well-defined. By the existence of identity functions for such types and

the associativity of function composition, the identity between the original thread

constraint and the optimized form follows directly.

3.1.2 Defining Thread Operators

Given a CLP system including a linear solver, programs written to use only linear

constraints, and an n-ary recursive clause consisting of equality constraints and the

44

recursive goal, the equalities define a linear system of equations S relating the vari-

ables of the argument vector ṽ with those in the call, and we wish to identify some

operator from linear algebra that is well-suited to represent this system.

We would like to choose some suitable representation for the constraints that occur

in numeric threads, one that allows us to express the functional nature of threaded

computation in a relational framework.

The operator we need must itself be declarative, with the functionality given by

additional requirements for groundness in that operator’s parameters.

Our requirements up to now for the operators fi have been modest, simply that

they be total over a common domain, so that composition is well-defined; and that

composition be by ground computation, to enable the thread optimization.

If the system is homogeneous, then the linear transform of left multiplication by

a coefficient matrix is a convenient operator [JRA89].

In the general case, however, some of the equations will include additive constants

besides the variables and their coefficients, e.g. units for increment or decrement, and

we need a matrix-vector pair, for the coefficient matrix augmented with its vector of

constants.

These matrix-vector pairs are named affine transforms, Definition 3.2, and Propo-

sition 3.1 gives some properties for the useful case where the coefficient matrix is

square.

Affine transforms have the virtue of representing numeric relations on thread pair

constraints clearly and directly, and meet the requirements if the transform coefficients

are ground by runtime.

45

Definition 3.2 (Affine Transform Multiplication)

An affine transform T is a pair 〈A, ã〉 consisting of an n×m matrix A and an n-vector

ã, with a binary operation ∗ defined by matrix multiplication and addition. We also

overload ∗ to allow vectors to appear on the right, so that for an n × m transform

Ta = 〈A, ã〉, m × n transform Tb = 〈B, b̃〉, and x̃ an n-vector, ∗ is defined by two

cases.

• Ta ∗ Tb = 〈AB, Ab̃ + ã〉 • Ta ∗ x̃ = Ax̃ + ã

Proposition 3.1 (The Structure (An, ∗) is a Monoid)

For the set of n-order affine transforms An, with Ta = 〈A, ã〉, Tb = 〈B, b̃〉, Tc and

TI = 〈I, 0̃〉 in An, x̃ an n-vector, and where I and 0̃ are the identity matrix and the

zero vector, respectively: the binary function ∗ is associative and TI is the identity

transform.

• Ta ∗ (Tb ∗Tc) = (Ta ∗Tb) ∗Tc

• TI ∗ Ta = Ta ∗ TI = Ta

• Ta ∗ (Tb ∗ x̃) = (Ta ∗ Tb) ∗ x̃

• TI ∗ x̃ = x̃

We interpret ∗ for vectors as application, and for transforms, composition.

• Ta ∗ Tb = Ta ◦ Tb • Ta ∗ x̃ = Ta(x̃)

Note that we allow unit order transforms, where row and column dimension equal

one. Also, proof of the properties in Proposition 3.1 will be provided in Chapter 5.

Although affine transforms are not as mathematically well-behaved as linear trans-

forms, lacking full distributivity, they are exactly suited to represent numeric threads

in loops. In particular, by the associativity of transform multiplication, we may com-

pose a chain of ground transforms prior to their application to program variables:

Tn(. . . (T1(x̃)) . . .) = (Tn ◦ . . . ◦ T1) x̃ = (Tn ∗ . . . ∗ T1) x̃.

46

It’s useful to consider the expected form of such a system of equations. Given a

recursive clause of a procedure p/n with 2n numeric variables as arguments in the

head and call, conceivably related by an arbitrarily complex system of any num-

ber of polynomials, accumulator-passing style restricts the form of the constraints

considerably. Ordinary programming style would in any case avoid nonlinear delays

where possible, and given the symmetrical modes of pairs, we also know that there

are exactly n independent constraints. In addition, we may reasonably expect that

the constraints are written to be syntactically and so visibly independent, with one

member of the pair partition, and so half the pair variables, written to be pivots,

in single assignment form. Given these characteristics, we can write the system of

equations for a recursive clause with 2n arguments as an n-order affine transform,

Definition 3.3.

Definition 3.3 (Thread Normal Form for Equations)

A set of n equations is in thread normal form if there are n distinct variables alone,

and only, on the left hand sides. Given a recursive clause with a set of n linear

equations in thread normal form, and with 2n variables, the right hand side coefficients

define an order n coefficient matrix and constant vector.

p(A1, . . . , An, . . .) :-
B1 = c11A1 + . . . + c1nAn + c01,
. . .
Bn = cn1A1 + . . . + cnnAn + c0n,
p(B1, . . . , Bn, . . .).

The coefficient matrix – constant vector pair define an affine transform relating the

vectors Ã and B̃.

47

B1
...

Bn

 =

c11 . . . c1n
...

...
cn1 . . . cnn

A1
...

An

+

c01
...

c0n

We use angle brackets to set off the transform values from the related vectors, and to

emphasize their role as a function.

B1
...

Bn

 =

〈 c11 . . . c1n c01
...

... ,
...

cn1 . . . cnn c0n

〉

A1
...

An

In the case here, where the variables in the input vector Ã are from the head, we say

the transform is an input, or initial operator; and if the variables of Ã be from the

call, that it is an output, or result operator.

The notation for equations in a numeric CLP language is purely relational; the

left and right hand side expressions may each be arbitrarily complex forms, with

potentially any number and combination of known and unknown variables. That

being said, due to the fixed goal selection, recursive procedures typically have a

clearly defined direction of computation, from the head, to the constraints prior to

the call, and to the call; and, if the loop is not tail recursive, then from the call to

the trailing goals, and finally to the head, or otherwise binding results from call to

head via shared variables.

A system of linear equations defines an affine transform directly; the augmented

matrix of that system is the affine transform. Given a set of equalities S, then, we

define affine transform relations for S by non-deterministically choosing all but one

of the variables in each multiplicative expression to be ground.

48

In addition, if in a a recursive clause, a set of equations have embedded some k-

order transform with square coefficient matrix, relating k-tuples of variables between

the head and recursive call from one iteration to the next, then the composition of

that transform is both well-defined and useful. We say that such k-order transforms

relating head and call variables thread those variables.

Note that there are two special cases where thread transform relations necessarily

exist.

The first is the singleton equation, where for variables X and Y in the head and

call, equation Y = A*X+B, and both X and Y occurring nowhere else, the unit-order

thread transform is <A, B>. E.g., for sum/3 and the constraint S=A+X, the transform

is <1, X>. Note that for notational convenience we allow transform values to be used

as anonymous functions, so that we may write S = <1, X>(A).

A second case where a thread transform between head and call must necessarily

exist occurs for the common idiomatic style where numeric expressions are used as

arguments in the call, and all the occurring variables in those expressions are argu-

ments from the head. In this case, when we rewrite the procedure to have variables

only in the head and call, in order to make equalities explicit, the newly introduced

variables occur only as call arguments and on the left hand sides of the newly created

equations, and as we will see in § 3.2.1.2, the one remaining step in deriving the

thread transform is to determine which terms must be ground, in order to maintain

linearity.

49

3.2 Affine Transform Derivation

We’ll first illustrate transform derivation by example, § 3.2.1, and then formalize

the derivation with an algorithm, § 3.2.2.

3.2.1 Examples of Transform Derivation

We now consider some examples to illustrate the derivation of affine transforms

from CLP(R) loops. It’s convenient to begin with a procedure defined by basic

arithmetic, to simplify the analysis, and yet one with additional numeric arguments

beyond the two used in sum/3, and the Fibonacci relation fills these requirements, in

§ 3.2.1.1. For our second illustration we consider the mortgage program, § 3.2.1.2,

where the recursive rule includes multiplicative expressions, and so potentially non-

linear constraints.

3.2.1.1 The Fibonacci Relation

Consider the problem of generating a Fibonacci number given the previous two.

Since we prefer accumulator passing style, we choose to generate a pair of Fibonacci

numbers, rather than just one, reusing one of the original pair. Then for the relation

(Fn−1, Fn) = fib(Fn−2, Fn−1), the operator fib is a linear transform, left multiplication

by the matrix
(

0 1

1 1

)

, and composition gives powers of that matrix. Figure 3.2 gives the

text of the fib/6 relation, written to use accumulator pairs, and subject to the thread

optimization, where a loop counter pair and the associated increment operation is used

to control termination, requiring that we use an affine rather than linear transform

to represent the computation at each iteration.

50

% fib(N, F) <- F is the Nth Fibonacci number.

% fib(I,N, A,B, F,G) <- I is an integer between 0 and N,

% while A, B, F, and G are the Ith, I+1th, Nth, and N+1th Fibonacci

% numbers, respectively,

fib(N, F) :-

fib(0,N, 1,1, F,_).

fib(I,N, A,B,F,G) :-

I=N, A=F, B=G.

fib(I,N, A,B,F,G) :-

I<N,

A<F,

J=I+1,

C=B,

D=A+B,

fib(J,N, C,D,F,G).

Figure 3.2: The Fibonacci Relation in Accumulator Pair Form

There are two kinds of equalities in the recursive call of Figure 3.2: explicit, e.g.

the increment J = I + 1; and implicit, e.g. shared variables such as N occurring in

both the head and call. Together they define two affine transforms representing the

recursive clause of the fib/6 relation, corresponding to the thread step functions

referred to as f1 and f2 in Definition 3.1. As is common for procedures written in

tail-recursive style, all the explicit equations occur prior to the recursive call, and so

are related to the operator f1, while implicit identities serve to bind results from the

call back to the head, and so are related to f2.

The explicit equations are written in thread normal form, with the right-hand and

left-hand side variables from the head and call, respectively.

J = I + 1

51

C = B
D = A + B

These equations together define a function f1 such that (J, C, D) = f1(I, A, B),

where the vector triples are ordered to match thread variables, e.g. (I, J) is a thread

pair. If we group the right hand side terms into columns, the result visually sug-

gests how the domain variables could be factored out to get the affine transform

representation.

J = I 1
C = B
D = A B

Since there are no multiplicative terms, the constraints are necessarily linear, the

transform coefficients consist of constants only, and the operator f1 may be con-

structed by inspection.

J
C
D

 =

〈 1 0 0 1
0 0 1 , 0
0 1 1 0

〉

I
A
B

Note that the linear transform
(

0 1

1 1

)

, referred to earlier as fib, is embedded in the

matrix of f1 above.

Since the shared variables {N, F, G} appear as the second, fifth and sixth argu-

ments in both the head and call, respectively, the implicit equations are identities,

and the operator f2 is the order-three identity transform.

The chain of affine transforms from the head through the call and back to the

head exactly matches the thread translation of Definition 3.1, so that using vector

notation to rename the pair triples in the head and call of the recursive rule as x̃, ỹ,

ũ, and ṽ, and leaving aside the inequalities for now, the rule body may be expressed

as ũ = f1x̃ ∧ fib(ũ, ṽ) ∧ ỹ = I ṽ.

52

3.2.1.2 The Mortgage Program

We’ll now consider another example, Figure 3.3, the mortgage predicate, mg/5,

with clauses rewritten to make equalities explicit. Transform derivation is more com-

plex, both because one equation includes a product of variable terms, so that there

is potential nonlinearity, and because the correct partition of equations between the

operators f1 and f2 is much less obvious.

% mg(P, T, I, R, B) <-

% For principal P and monthly interest rate I, B is the

% balance after T months given a monthly repayment of R.

mg(P, T, I, R, B) :-

T > 0,

A1 = P * (I+1) - R,

A2 = T - 1,

A3 = I,

A4 = R,

A5 = B,

mg(A1, A2, A3, A4, A5).

mg(P, T, _, _, B) :-

T = 0,

B = P.

Figure 3.3: The Mortgage Relation

We’ll start with the problem of ensuring that muliplicative constraints be linear,

since this question can be decided by per-equation analysis. In general, for a recursive

clause with a multiplicative equation Y = A ∗ X + B, where X and Y are same-

index arguments of the head and call, respectively, and so form a thread pair related

by 〈A, B〉, then for X0 in the initial call, and Yn after n recursive calls, we have

53

Yn = 〈A, B〉n(X0), which is linear for ground A and B, and eventually nonlinear

otherwise. This generalizes for higher dimensions; when deriving affine transforms

from multiple related thread normal form equations in recursive rules, we can factor

out thread pair head variables from the right hand sides, and require that all other

terms be ground inputs. Though there are instances where transform products with

scattered non-ground terms are linear, the rule that all transform terms be ground

captures the useful and common case.

Applying this notion of linear thread pair variables and ground transform coeffi-

cients to the recursive rule of mg/5, where the only potentially nonlinear constraint

is A1 = P ∗ (I + 1)− R, and noting that P and A1 form a thread pair, we require that

the parameter I be ground, so that the mode is at a minimum mg(?,?,+,?,?).

In the previous example of Figure 3.2, the explicit and implicit constraints corre-

sponded to the the initial and trailing thread step functions f1 and f2, respectively.

Although this is a natural consequence of using accumulator passing style to achieve

tail recursion, we can’t always depend on having such a fortuitous partition to guide

derivation, since identity bindings may occur in the initial as well as the trailing

thread step functions, so that we need some criteria with which to assign constraints

to operators.

We start by using graph traversal to group equalities. Given a linear recursive

rule rewritten to have unique variables only in the head and call, so that all equalities

are explicit; treating literals and variables as hypernodes and hyperarcs, respectively;

and for the induced graph with the head and recursive call removed, so that there are

constraints only: then the constraints of each connected component are related by

54

per-iteration computation via shared variables, and should be grouped into the same

thread step functions.

The constraints of the recursive call group into three connected components.

T > 0

A2 = T − 1

A1 = P (I + 1)−R

A3 = I
A4 = R

A5 = B

Leaving aside the inequality for now, the first and third components have unit

transforms, and by inspection we see those to be the decrement and identity operators

〈1,−1〉 and 〈1, 0〉. Putting aside in addition the constraint A3 = I, since I is a ground

input rather than a threaded variable, this leaves two equations remaining as input

for operator derivation.

A1 = P (I + 1)−R

A4 = R

Factoring each equation with respect to the thread pair variables from the head,

P and R, we get an order-2 transform.

(

I + 1 − 1

0 1

)

(3.1)

We’ve used a kind of local analysis, graph traversal to find constraint connected

components, in order to group equations into transforms, and now we need to furthur

group the transform pairs to get the step operators f1 and f2.

By our understanding of the source code, we realize that the unit decrement for

T provides control, and belongs before the call, along with the calculation of the

55

running balance for the mortgage, and we suspect that the operator f1 is an order-3

transform, consisting of the decrement and mortgage calculation together, leaving

only one equation for the operator f2, so that the recursive rule of mg/5 does not

exactly match Definition 3.1. We need a global analysis, one that considers the base

case as well, both to see what is happening in mg/5, and not incidently to drive

compilation for the general case in the absence of human program understanding.

As thread pairs in the recursive case represent threading relationships between

arguments in the head and call, so do accumulator pairs in the base represent the

binding between the initial and trailing step operators f1 and f2.

The identity relation between the principal P and balance B in the base case serves

to return the result, confirming that those variables belong to distinct thread tuples

in the recursive rule. The absence of any other threaded equations there indicates

that as written, the mg/5 relation projects from multiple thread inputs including the

principal P to a single result argument, the balance B.

We have three transform pairs from the recursive rule, consisting of the unit

decrement and identity transforms as well as the order-2 running balance calculation,

and we know by the base case that the balance calculation transform and the identity

transform relating A5 and B belong to distinct step operators.

At this point we are otherwise free to group the transforms as we wish, so following

the heuristic of placing constraint inequality tests and arithmetic computation prior to

the recursive call, in order to maintain termination and allow for ground computation,

we catenate the unit decrement and balance calculation transforms to get the initial

thread step operator f1.

56

A2
A1
A4

 =

〈 1 0 0 −1
0 I + 1 −1 , 0
0 0 1 0

〉

T
P
R

The base case operator f0 and trailing step operator f2 are both unit identity

transforms relating the balance B with some other variable, the principal P and tem-

porary A5, respectively, and we see that, given a ground input for the interest rate,

the mg/5 relation may be read as projecting from an input triple (T, P, R) to a

single result argument, the balance B.

3.2.2 The Transform Derivation Algorithm

The manual derivation of the previous sections can be formalized as an algorithm:

in Figure 3.4, the procedure derive xform() either returns an affine transform ma-

trix vector pair, or fails due to nonlinearity. The procedure requires that the rule

parameter be linear recursive, with variables only in the head and call, constraint

goals only beyond that one recursive call, and the equations in thread normal form.

The core of the algorithm is a nested loop: the outer loop traverses the rows of the

transform together with the threaded equations of a constraint connected component,

and the inner one, the transform columns together with the head thread pair variables

that are related to that component. Since the equations are in thread normal form,

with as many thread pairs as threaded equations, and the transform dimension sized

to match, the loop limits above are neatly synchronized.

In the inner loop, given a right-hand side remainder initially bound to the equation

right-hand side, the remainder is factored by successive related thread pair head

variables. The result of factoring at each iteration is a binomial pair, either linear

with respect to the head variable, in which case the binomial coefficient term is bound

57

procedure derive_xform(ref Rule, ref Ccc)

head Head = Rule.head;

call Call = Rule.call;

natural N = Ccc.size()

matrix[N,N] Matrix = 0

vector[N] Vector = 0

int Row = 0

for each thread pair equation Eq of the connected component Ccc

if Eq.lhs is a singleton var V also the call half of a thread pair

expr Exp = Eq.rhs

if no thread pair call vars occur in Exp

int Col = 0

for each thread pair var X from the head related to Ccc

if Exp may be factored as the linear form (A * X + B)

matrix[Row,Col] := A

Exp := B

else fail

Col := Col + 1

vector[Row] := Exp

else fail

else fail

Row := Row + 1

return (Matrix, Vector)

Figure 3.4: The Transform Derivation Algorithm

58

to a matrix cell, and the remainder saved for the next iteration, and finally the vector

row of the transform pair; or else nonlinear in one or more of the thread variables, in

which case the algorithm returns failure.

In practice a sparse matrix representation is used for the initial representation of

the affine transform, with (row, col, exp) triples stored in a list, and the row and

column indices derived from the thread pair variable argument indices, so that the

implementation is not subject to the out-of-bounds array access errors that can occur

here when the Ccc threading preconditions are not met.

3.3 Optimizing Transform Composition

The time complexity of transform composition is cubic in the order, and so is

potentially expensive. There are a number of optimizations that can be applied to

reduce this cost, and the mortgage program is a rich source of illustrations. Figure 3.5

displays the equation for tranform composition for the recursive loop of the optimized

mortgage program, with constant coefficients indicated as zeros or ones, and the

handful of variable terms named with subscripts, e.g. A22.

〈 1 0 0 B1

0 B22 B23 , 0
0 0 1 0

〉

=

〈 1 0 0 −1
0 I + 1 −1 , 0
0 0 1 0

〉 〈 1 0 0 A1

0 A22 A23 , 0
0 0 1 0

〉

Figure 3.5: Constant Terms in the Transform Composition for mg/5

There are 9+3=12 coefficients for an order-3 transform, so that naive code gener-

ation would use 24 arguments to represent a transform accumulator pair. After order

59

reduction, § 3.3.1, and identity elimination, § 3.3.2, only six variables are needed to

represent the order-3 transform pair; Figure 3.6 gives the three constraints needed to

compute the composition.

B1 = A1 - 1

B22 = A22 * Isum

B23 = -A22 + A23

Figure 3.6: The Loop Kernel for Transform Composition for Optimized mg/5

3.3.1 Order Reduction

Since transform composition has cubic time complexity, the most powerful way to

reduce time cost is to decrease the transform order, either by projection, or splitting.

3.3.1.1 Projection

Constant parameters may be projected out, so that though there is a pair of

transform composition arguments, the result transform is lower order than the input.

The notion of a constant parameter includes both ground inputs such as loop

counters, e.g. the months counter T in the mortgage program, and also unbound values

with identity bindings, e.g. the monthly repayment rate R, again in the mortgage

program.

3.3.1.2 Splitting

Although we choose to build up high-order operators to match the linear recursive

thread definition, which asks for at most two loop operators, one prior to the call,

and another possibly following it, and though this may be convenient for pattern

matching, it is completely unnecessary for code generation.

60

In the mortgage kernel loop example, the order-3 value used to match the thread

pattern is built up from two separate constraint connected components, and can be

split back into its constituent pieces prior to code generation for composition. This

notion of transform catenation and splitting is formalized in § 3.4.1.

3.3.2 Identity Elimination

Since the initial value for composition of the loop step operators is the identity

transform, it follows by induction that identity values in those operators are stable

under composition.

3.3.2.1 Zero Vectors

An affine transform with the vector term zero is also a linear transform, and the

vector terms can be discarded, e.g. the order-2 fib and interest rate operators.

3.3.2.2 Identity Matrices

An affine transform with the matrix term an identity matrix is essentially a vector,

with composition computed by with vector addition, e.g. the loop counter increment

and decrement operations for the fibonacci and mortgage programs.

3.3.2.3 Identity Rows

Even if the matrix term of an affine transform is not the identity, one of the rows

may be, and these also are stable under composition, and so can be ignored, e.g. the

second row of the interest rate operator for the mortgage program:

(

I + 1 − 1

0 1

)

61

3.3.3 Code Hoisting

Constants may provide other opportunities for optimization beyond identity com-

putation. This raises the question of exactly what we mean when we speak of a

coefficient as being constant. Affine transform coefficients must be known by the

time they are used, else the thread optimization is not applicable due to nonlinear-

ity. Given this, there are three cases, as the transform is a compile time constant,

e.g. the order-2 fib linear transform
(

0 1

1 1

)

; constant across iterations of a loop, e.g.

the order-2 interest rate linear transform for the mortage program, operator 3.1; and

varying from one iteration to the next, e.g. the add operator for the sum/3 program,

〈1, X〉. The first case provides an opportunity for successive doubling, and the second,

for subexpression elimination, while the third is dynamic and not subject to code

hoisting.

3.3.3.1 Subexpression Elimination

Since transform coefficients must be ground by composition time, when first en-

countered during iteration, the coefficient terms of transforms are a likely place to

look for expressions that may be factored out of loops. A coefficient expression that

consists only of ground parameters and literals, e.g. I+1 in mg/5, may be computed

outside the loop, and passed directly as an argument.

3.3.3.2 Successive Doubling

Where entire transforms are constant within the body of a loop, even if only for a

particular call at runtime, composition for n iterations is equivalent to raising the loop

transform to the nth power, and can be done by successive doubling, at a reduction

in time complexity from O(n) to O(lg n). The mg/5 and linear fib/2 procedures

62

are candidates for this optimization, since the transform terms are constant across

iterations within a loop.

3.4 Additional Properties of Affine Transforms

We end this chapter by giving the rest of the definitions and properties for affine

transforms that we will need to develop the thread optimization: § 3.4.1 defines the

operations to join and split transforms that were mentioned earlier, while § 3.4.2

defines the notion of an affine transform inverse.

3.4.1 Affine Transform Catenation and Splitting

We need operations to join the transforms, to build the initial or final loop step

operators from the individual transforms derived from the constraint connected com-

ponents, and then to split those operators back up, prior to code generation, in order

to reduce the transform order and so the complexity of transform composition.

Definition 3.4 (Catenated and Separable Transforms)

Given two transforms A = 〈A, ã〉 and B = 〈B, b̃〉 of order k and m respectively, the

catenated sum C = A⊕ B is an n-order transform 〈C, c̃〉 such that, for all indices i

and j in the interval [1, n]:

• Cij = Aij ∧ c̃i = ãi when i ≤ k and j ≤ k.

• Cij = Bi−k,j−k ∧ c̃i = b̃i−k when i > k and j > k.

• Cij = 0 ∧ c̃i = 0 otherwise

63

Given C = 〈C, c̃〉 an n-order transform, n > 1, C is separable into two transforms

of order k and m respectively, k + m = n, when the cross diagonal coefficients are

zero.

• Cij = 0 when

1 ≤ i ≤ k ∧ k < j ≤ n or

k < i ≤ n ∧ 1 ≤ j ≤ k

The definition of cross-diagonal coefficients above restates the third case for catenation

above, so that catenated transforms are separable.

Catenation glues two transforms into a third such that the matrix coefficients

of the second are renumbered to be below and to the right of those from the first,

e.g. the operator f1 for mg/5 is the catenation of the unit decrement and order-two

interest rate calculation transforms. In other words, a separable transform is a non-

unit transform that meets the third condition for a catenated transform above, that

the crosswise matrix coefficients be zero.

Since the notions of transform catenation and separation are defined to be duals,

we may catenate transforms to match the form of Definition 3.1, and work with their

separated constituents otherwise.

Recall that we treat transform composition as multiplication, so that successive

composition of a single transform may be expressed as exponentiation, and of possibly

distinct transforms, as a product sequence.

Proposition 3.2 (Order Reduction for Transform Composition)

Given a sequence of transforms C1 . . . Cx, where each of the Ci is n-order and separable

64

into k and m-order constituents Ai and Bi, so that Ci = Ai ⊕ Bi for each i ∈ [1, x],

catenation distributes across composition.

x
∏

i=1

(Ai ⊕ Bi) = (
x
∏

i=1

Ai)⊕ (
x
∏

i=1

Bi)

Given separation of n into k and m dimension transforms, order reduction for

composition allows us to reduces the number of equations for composition from O(n2)

to O(k2 + m2), e.g. from nine to five for the operator f1 of mg/5.

3.4.2 Constraint Reordering and Transform Inverses

Constraint reordering ([MS93]) is an important CLP optimization that depends

on the relational nature of CLP computation. The thread analysis up to this point

has taken advantage of reordering to group related constraints and move indentity

equalities across the recursive call, but has been implicitly functional once transform

derivation occurs, with the initial and result transform computation fixed prior to and

following the recursive calls, respectively. This leaves the question of how constraints

with numerical expressions can be moved across the call, say to achieve tail recur-

sion. Certainly we can reorder them freely in the original code, subject of course to

termination concerns, but in order to achieve ground computation with compilation

to imperative arithmetic, we need to ensure that bindings occur exactly once, and

that expression values are defined before use.

Consider the mortgage program variant in Figure 3.7, where the interest rate

calculation follows the recursive call. The example is admittedly contrived, since the

code is non-intuitive; still, let’s see where it takes us, since more realistic examples

are necessarily far more complicated.

65

mg(P, T, I, R, B) :-

T > 0,

A2 = T - 1,

A3 = I,

A5 = B,

mg(A1, A2, A3, A4, A5),

P = (A1 + R) / (I + 1),

R = A4.

mg(P, T, _, _, B) :-

T = 0,

B = P.

Figure 3.7: A Mortgage Program Variant Without Tail Recursion

In Figure 3.8, transform derivation finds a linear transform, equation 3.2. Re-

ordering, equation 3.3, requires the matrix inverse, which we already know from the

standard form of the mortgage program. Cancelling the identity, and swapping left

and right hand sides, we achieve the standard form, equation 3.4, of the mortgage

program interest rate calculation.

(

P
R

)

=
[

1/(I + 1) 1/(I + 1)
0 0

] (

A1
A4

)

(3.2)

[

0 I + 1
0 0

] (

P
R

)

=
[

0 I + 1
0 0

] [

1/(I + 1) 1/(I + 1)
0 0

] (

A1
A4

)

(3.3)

(

A1
A4

)

=
[

0 I + 1
0 0

] (

P
R

)

(3.4)

Figure 3.8: Using Transform Inverses to Allow Constraint Reordering

66

The computation of equation 3.4 has the desired data flow, so that the interest rate

computation can be moved before the call, while still allowing for ground computation.

We need, then, transform inverses, both to allow for reordering and for other

purposes which will become clear in the next chapter. The matrix inverse alone

is sufficient for the special case of linear transforms, but for the more general case

of affine transforms, we need some additional foundation material, beginning with

transform addition, Definition 3.5.

Definition 3.5 (Affine Transform Addition) Given Ta = 〈A, ã〉 and Tb = 〈B, b̃〉

n×m transform pairs, the operations binary + and unary − are defined in terms of

matrix addition.

• Ta + Tb = 〈A + B, ã + b̃〉 • −Ta = 〈−A,−ã〉

Proposition 3.3 below gives the remaining definitions and properties for affine

transforms that we need, including the form of the transform inverse.

Proposition 3.3 (Other Properties of Affine Transforms)

For T0 = 〈0, 0̃〉, where 0 and 0̃ are the zero matrix and zero vector, respectively,

then the operation + has the identity element T0; an additive inverse −T for all

transforms T; is associative; and commutative.

In addition, for any transforms Ta, Tb and Tc from An, where Ta = 〈A, ã〉,

Tb = 〈B, b̃〉, and Tc = 〈C, c̃〉, we have the following:

When A−1 exists there is an inverse T−1
a = 〈A−1,−A−1ã〉.

Right distributivity holds for ◦, so that (Ta + Tb) ◦ Tc = Ta ◦ Tc + Tb ◦ Tc.

Proofs of the properties stated above are provided later, in Chapter 5.

67

CHAPTER 4

Thread Translations for Recursive Procedures

Our objective is to describe formally the classes of programs that can be optimized,

and then describe the optimizations as source to source translations; the translations

then allow us to reduce solver overhead by replacing constraint tests with goals that

can be solved by direct evaluation and assignment.

4.1 Linear Recursive Procedures

In the following, we use the notation X̃ for a vector of program variables, T for an

affine transform in a source program, and X for a transform added to an optimized

program. In all cases these are shorthands for a finite number of program terms, not

an addition to the language. In addition, for the rest of this chapter procedures and

predicates will have distinct meanings. For a predicate p defined by some set of rules,

a procedure P is a pair, (p, θ), the predicate p with explicit calling pattern, or mode,

θ. Finally, for a procedure P of predicate p having clause p(X̃, Ỹ , Z̃) :- G1, · · · , Gn,

the following conventions are used in defining recursion pattern classes.

• In the head,

– X̃ and Ỹ are vectors of numeric terms that are of interest, and

68

– Z̃ is the set of all other arguments.

• In the body, a goal Gi may be:

– a recursive call to P ; or

– a constraint involving a ground affine transform T, and any two of X̃, Ỹ ,

X̃ ′, or Ỹ ′, where X̃ ′ and Ỹ ′ are also parameters in a recursive call to P ; or

– any other goal that does not cause a recursive call to P , or involve terms

from X̃, Ỹ , or any X̃ ′ or Ỹ ′.

For any Gi, goals of the first two types are explicitly mentioned in definitions, so

that in a body G1, · · · , Gn all other goals are of the third type. Definitions describe

rules for recursive and base cases, and in each definition, it should be understood that

at least one rule of each type must occur, and that no other form of rule is allowed.

The simplest recursion pattern has exactly one recursive goal in the body of a

recursive rule.

Definition 4.1 (Simply Linear Recursive Procedure) Let P be a set of rules

defining predicate p and calling pattern θ, of form

p(X̃, Ỹ , Z̃) :- G1, · · · , Gn.

• base cases

Gk is Ỹ = T(X̃), for 1 ≤ k ≤ n

• recursive cases

For some k, l, m : 1 ≤ k < l < m ≤ n

1. Gk is Ũ = T1(X̃)

69

2. Gl is p(Ũ , Ṽ , Z̃)

3. Gm is Ỹ = T2(Ṽ)

For terms of interest, and depending on the calling pattern θ, a linear recursive

procedure will either perform ground computation, or accumulate equality constraints

in the solver. For θ with arguments corresponding to X̃ and Ỹ free, linear recursive

transforming procedures build a chain of constraints between X̃ and Ỹ using the affine

transforms. We can use the associativity of these transforms to define equivalent

procedures with simplified constraints, so that the transforms are composed and then

applied to X̃.

4.1.1 The Fundamental Thread Translation

The correctness of this and the other translations to follow in this chapter are con-

sidered in Chapter 5, where induction on derivation trees is used to prove preservation

of success, failure, correctness, and length of computation.

Translation 4.1 (Linear Threaded) Let P = 〈p, θ〉 be a linear transforming pro-

cedure. An equivalent procedure is obtained by replacing each rule by

p′(X ,Y, Z̃) :- G1, · · · , Gn.

Where:

• base cases

Gk is Y = T ◦ X

• recursive cases

70

1. Gk is U = T1 ◦ X

2. Gl is p′(U ,V, Z̃)

3. Gm is Y = T2 ◦ V

Additionally, a wrapping rule of the form

p(X̃, Ỹ , Z̃) :- p′(TI,Y, Z̃), Ỹ = Y(X̃).

is added.

For terms of interest, and depending on the calling pattern θ, a linear recursive

procedure will either perform ground computation, or accumulate equality constraints

in the solver. For θ with arguments corresponding to X̃ and Ỹ free, linear recursive

transforming procedures build a chain of constraints between X̃ and Ỹ using the affine

transforms. We can use the associativity of these transforms to define equivalent

procedures with simplified constraints, so that the transforms are composed and then

applied to X̃.

The linear threaded translation, first of these cases, is the workhorse translation,

and applicable either in part or whole to the large majority of linear recursive pro-

cedures. It provides ground computation by threading transform composition from

the initial call to the base case and back again, so that as noted previously, there is

a pair of transform arguments, an accumulator pair.

Examples of pure linear threaded equality procedures are given in Figure 4.1. In

each case, termination is controlled via list traversal, since we have not yet considered

inequalities; note that the traditional mortgage program, mg/5, though subject to the

linear thread translation for its equality constraints, uses inequality constraints for

loop control, and so will be considered later, in Chapter 5.

71

% length(L, I,N) :- The length of the list L is N-I.

% sum(L, S,T) :- The total of the list L is T-S.

% dot(A,B, X,Y) :- The dot product of the vectors A and B is Y-X.

% vrmg(Ms, P,B) :- The variable rate mortgage with list of monthly interest

% rate, repayment rate pairs Ms has principal P and balance B.

length([], I, N) :- I = N.

length([_|Xs], I, N) :-

J = I + 1,

length(Xs, J, N).

sum([], T, T).

sum([X|Xs], S, T) :-

sum(Xs, S+X, T).

dot([], [], X, X).

dot([A|As], [B|Bs], X, Y) :-

dot(As, Bs, X+A*B, Y).

vrmg([],P,B) :- B = P.

vrmg([[I,R]|Ms], P,B) :-

A2 = P * (1 + I) - R,

vrmg(Ms, A2, B).

Figure 4.1: Numeric, Linear Recursive, Thread Optimizable CLP(R) Predicates

72

The other three cases, as we take transform inverses, forgo accumulator passing

style, or both, also use transform composition to provide ground computation, but at

the cost of tail optimization for the recursive call, or of transform inverse computation

at runtime. These other cases are of interest primarily to suggest translation strategies

for the more complicated multiply recursive procedures to be considered later, and

only secondarily for use in optimization of linear recursive procedures, since actual

examples are rare in practice.

In the translations that follow, note that either the pre or post-recursion transform

may be the identity, TI = 〈I, 0̃〉; and note also that without loss of generality we have

assumed variables only in heads and calls.

4.1.2 Applying the Thread Translation to the Mortgage Pro-

gram

The optimized mortgage program needs consist of three parts: a wrapper named

mg/5; the original program, though renamed; and an optimized procedure rewritten

to use ground arithmetic. We’ll consider the optimized loop first, followed by the

wrapper.

4.1.2.1 The Optimized Loop

The text of the optimized mortgage procedure, mg opt/7, is given in Figure 4.2.

It computes the variable cells of the initial transform operator f1 as derived in the

previous chapter, and threads those values back out, by assignment in the base case,

and by implicit equalities from the call back to the head in the recursive rule. We

use implicit equalities rather than explicit bindings following the call in order to leave

the recursive call in last call position, so that the clause is tail recursive.

73

% mg_opt(Isum, A11,A12,A33, C11,C12,C33)

% The variables (A33,C33) form a loop counter-limit pair,

% while the other Aij and Cij are the variable cells of a

% pair of matrices accumulating powers of | Isum -1 |

% | 0 1 |.

:- mode(mg_opt(+, +,+,+, -,-,+)).

:- type(mg_opt(f, f,f,f, f,f,f)).

mg_opt(Isum, A11,A12,A33, C11,C12,C33) :-

A33 lt C33, % | Isum -1 | | A11 A12 |

B11 is A11 * Isum, % | | * | |

B12 is -A11 + A12, % | 0 1 | | 0 1 |

B33 is A33 - 1,

mg_opt(Isum, B11,B12,B33, C11,C12,C33).

mg_opt(_, A11,A12,A33, C11,C12,C33) :-

A33 eq C33,

C11 is A11,

C12 is A12.

Figure 4.2: The Affine-Threaded Mortgage Relation

The operators is/2, lt/2 and eq/2 provide imperative assignment and ground

comparison, and the procedure is essentially an imperative loop. The type declara-

tion signals the reader that the arguments are not logical, but rather floating point

variables, as required for the imperative operators above, while the mode declaration

is a promise from the analysis that calls will ensure appropriately ground or unbound

arguments.

Several of the transform operator reductions of the previous chapter have been

applied. Transform splitting has been used to reduce the transform order, identity row

elimination to reduce the cost of matrix multiplication from four to two constraints,

74

and tail identity transform elimination to allow the call result to be returned in

registers.

In addition, since transform coefficients must be constant, the occurrence of the

expression I + 1 as a transform coefficient signals an opportunity for code hoisting,

with the parameter I replaced by the sum I+1, and the addition performed earlier,

in the wrapper before the call.

The mode and loop control information provided by the thread transform deriva-

tion allows us to recognize that the rules of mg opt/7 are mutually exclusive, and

discard choice points during iteration, so that so that no choice point increase the use

of indexing,

If a recursive procedure depends for correctness on the calling mode, then that

procedure not only requires the mode, but also must ensure it to enable iteration; we

say that the recursive procedure must have a stable mode. Wrapper switches correctly

implement multiple specialization only if mode-dependent cases have stable modes.

In the wrapper below, we are concerned with mode stability only for the first,

optimized case, since the implementation of the last case, for time or interest rate un-

known, is unchanged. The crucial requirement, that independent variables be ground,

is met by the monotonicity of first-order logic; ground variables remain ground, and

in this case, for I already known, it remains known. Once given ground transform

operators, then mode stability follows from their linearity; ground inputs give ground

outputs, and unbound inputs give unbound outputs. The final requirement, that

thread equality constraints must be satisfiable, follows from the fact that the outputs

are newly introduced variables, and so unbound.

75

4.1.2.2 The Wrapper

We must ensure that the optimized predicate is called only for ground T and I,

thereby ensuring linearity and termination for the optimized form. In Figure 4.3 the

mg/5 relation is rewritten as a pair of mutually exclusive wrapper rules. The first rule

consists of mode tests for both T and I ground, a call to the optimized form of the

mortgage relation, and application of the transform composition after the loop. The

second, default rule forwards to the original, unoptimized loop for the case where the

mode checks fail.

% mg(P, T,I,R, B) <-

% For principal P and monthly interest rate I, B is the

% balance after T months given a monthly repayment of R.

mg(P, T, I, R, B) :-

let T_prime = T,

let I_prime = I,

!,

mg_opt(T_prime, I_prime, 1, 0, B11, B12),

C11 is B11,

C12 is B12,

B = P * C11 + R * C12.

mg(P, T, I, R, B) :-

mg_old(P, T, I, R, B).

mg_old(P, T, I, R, B) :-

T > 0,

mg_old(P*(I+1)-R, T-1, I, R, B).

mg_old(B, 0, _, _, B).

Figure 4.3: The Wrapper for the Optimized Mortgage Relation

76

This use of two programs for distinct modes, along with the mode tests neces-

sary to correctly choose versions, is an example of multiple specialization [Win92] by

runtime tests [JLW90].

The wrapper predicate is useful both as a switch to distinguish the three modes,

and also as a convenient place to provide the operator pair arguments in a call to

the optimized procedure, and apply the resulting composition afterwards, where B11

is (I + 1)T , and B12, −∑T
i=0 (I + 1)i. In addition, by the groundness of I for the

third case, we have an opportunity to perform common subexpression elimination for

loops, by computing the total Isum = 1 + I prior to the call to mg opt/7.

In the implementation of mg opt/7, we use ground arithmetic to accumulate the

transform operator f1, which requires that the interest rate variable be ground, else

arithmetic computations use unitialized values.

We check for unbound I and T by runtime mode tests using the non-logical builtin

var/1, satisfiable if the argument is a variable and failing otherwise, and ensure that

the clauses are mutually exclusive by using the cut !/0 operator, which discards those

choice points occurring from the point of call into the enclosing predicate up to the

cut itself, here simply the choice points for each clause.

Although we could make the third clause mutually exclusive with respect to the

first two by using negation, e.g. the commented out goals in the third clause, it is

faster to simply use cuts following the var/1 tests, to remove the unwanted choice

points, and so prevent backtracking into the third clause.

The cut !/0 operator discards those choice points occurring from the point of call

into the enclosing predicate up to the cut itself, here simply the choice points for

77

each clause, while not/1 would use negation as failure, which though unsound for

non-ground arguments, is valid here for the deterministic builtin var/1.

All three of var/1, !/0, and not/1 are low level operators, sacrifice the logical

reading, and are avoided where possible as a matter of programming style. For

source-to-source translation, where the compiler does the dirty work, and style is less

important, they are harmless when correctly used; they may be compared to goto

instructions produced by imperative compilers.

4.1.2.3 Determinism and Termination

We must consider if any of the variables related by transform application are

involved in loop control, since we need to preserve termination when rewriting the

recursive rule to replace transform application with composition.

For the mortgage relation we’ll see that not only is termination preserved, but also

that in addition we can replace the inequality constraint and numeric computation

with ground imperative inequality tests using the underlying hardware.

Affine equalities between bound and unbound threaded variables are necessarily

satisfiable, so that loops can only terminate due to other constraints, and there are

two cases of interest, as the satisfiability of those other constraints is independent

of transform variables or not. In the first case, e.g. sum/3 with unbound initial or

total values, where termination depends on the list term, the other constraints may

simply be left unchanged. In the mortgage program, however, termination depends

on a numeric variable, the time period T, and we must consider how the thread

optimization affects other numeric constraints.

In the original mortgage program, the non-affine constraints are, in the base case,

T = 0, and during recursion, T > 0. Recall that we were able to include T in the

78

operator f1 by introducing a new parameter variable bound to zero, say Z, so that we

have T = Z and T > Z, and we wish to know how such constraints are rewritten by

the thread optimization.

Our general problem is to decide under what conditions we have that, for a binary

relation �, variable vectors Ã and B̃, and affine transforms Ta and Tb, we are given

that Ã� B̃ ⇔ Ta �Tb, so that we can rewrite existing constraints to instead compare

accumulated transforms without changing termination.

We can define > for unary transforms as 〈A, X〉 > 〈B, Y 〉 ⇔ A = B ∧ X > Y ,

and then for a loop with counter T , limit Z, termination test T > Z, and where the

transform at each iteration is the unit decrement operator, we have 〈1, T 〉 > 〈1, Z〉 ⇔

T > Z. In addition, for higher-order transform operators where the counter and limit

variables are textually indendent of the other variables, so that for a counter-limit

pair in row k, we have in the transform matrix that ∀i 6= k : Aik = 0 ∧ Aki = 0, then

we can project the counter-limit pair variables from the accumulated transform, and

perform the comparison directly, as if using the original variables.

For the mortgage program, then, where the matrix coefficients for the loop counter

are independent of the other rows, the text of the inequality T > Z is left unchanged

modulo variable renaming. We can achieve a speedup if both the time period and

limit are ground, by performing ground comparisons using the underlying hardware,

so that we no longer need to test the inequality for satisfiability by the first phase of

the simplex algorithm.

79

4.2 Asymmetrical and Multiply Recursive Rules

In this section, we describe progressively more general versions formally. We begin

with linear recursion, where there is at most one recursive call in any rule of a proce-

dure, and consider alternate ways to translate linear recursive procedures. We then

consider multiply recursive procedures, and show how the various dataflow patterns

for the linear recursive translations can be generalized to the multiply recursive case.

The simplicity of the recursion pattern enables us to compose these transforms in

four different ways, as we use accumulator passing style or not, and use the transforms

directly or take inverses. We refer to the translations with and without accumulator

passing style as thread and gather translations, respectively, and name the use of in-

verses explicitly, with it understood that transform terms are used directly otherwise.

Our four translations for linear recursive procedures, then, are 4.2: Linear Threaded;

4.3: Inverse Linear Threaded; 4.4: Linear Gather; and 4.5: Inverse Linear Gather.

4.2.1 Asymmetrical Rules and Transform Inverses

Translation 4.2 (Linear Threaded) Let P = 〈p, θ〉 be a linear transforming pro-

cedure. An equivalent procedure is obtained by replacing each rule by

p′(X ,Y, Z̃) :- G1, · · · , Gn.

Where:

• base cases

Gk is Y = T ◦ X

• recursive cases

80

1. Gk is U = T1 ◦ X

2. Gl is p′(U ,V, Z̃)

3. Gm is Y = T2 ◦ V

Additionally, a wrapping rule of the form

p(X̃, Ỹ , Z̃) :- p′(TI,Y, Z̃), Ỹ = Y(X̃).

is added.

Translation 4.3 (Inverse Linear Threaded) Let P = 〈p, θ〉 be a linear trans-

forming procedure. If the transform inverses for the Ti exist, an equivalent procedure

is obtained by replacing each rule by:

p′(X ,Y, Z̃) :- G1, · · · , Gn.

Where:

• base cases

Gk is X = T0
−1 ◦ Y

• recursive cases

1. Gk is X = T1
−1 ◦ U

2. Gl is p′(U ,V, Z̃)

3. Gm is V = T2
−1 ◦ Y

Additionally, a wrapping rule of the form

p(X̃, Ỹ , Z̃) :- p′(TI,Y, Z̃), Ỹ = Y(X̃).

is added.

81

Translation 4.4 (Linear Gather) Let P = 〈p, θ〉 be a linear transforming proce-

dure. An equivalent procedure is obtained by replacing each rule by

p′(Y, Z̃) :- G1, · · · , Gn.

Where:

• base cases

Gk is Y = T

• recursive cases

1. Gk is deleted

2. Gl is p′(X , Z̃)

3. Gm is Y = T2 ◦ X ◦ T1

and the wrapping rule is:

p(X̃, Ỹ , Z̃) :- p′(Y, Z̃), Ỹ = Y(X̃).

Translation 4.5 (Inverse Linear Gather) Let P = 〈p, θ〉 be a linear transforming

procedure. If the transform inverses Y exist for both base and recursive cases, an

equivalent procedure is obtained by replacing each rule by:

p′(Y, Z̃) :- G1, · · · , Gn.

Where:

• base cases

Gk is Y = T−1

82

• recursive cases

1. Gk is deleted

2. Gl is p′(X , Z̃)

3. Gm is Y = (T2 ◦ X−1 ◦ T1)
−1

and the wrapping rule is:

p(X̃, Ỹ , Z̃) :- p′(Y, Z̃), Ỹ = Y−1(X̃).

In most cases of the linear threaded translation, the trailing transform, T2, though

composed after the recursive call, may be and typically is the identity, so that both the

original and optimized procedures are tail recursive. E.g., each of the four examples

of a numeric linear recursive procedure in Figure 4.1 uses accumulator passing style,

is tail optimizing, and is subject to the linear threaded translation.

Although we can choose to apply any of the four linear recursive translations to a

procedure, loss of tail optimization is a poor start for other optimizations, and so we

prefer the threaded to the gather translations. Of more interest is the way in which the

linear threaded translation offers to add accumulator passing style, e.g. for sum/2, in

Figure 4.4, though the procedure is not tail recursive, the linear threaded translation

gives the optimized form of sum/3, which is. Note, however, that most programmers

are meticulous about using accumulator passing style to move computation prior to

the recursive call, so that examples such as sum/2 are rarely encountered in practice.

The inverse threaded translation similarly has its uses in theory, though perhaps

not to translate entire procedures. Rather, in the case where rules are asymmetrical,

so that the calling pattern is not stable, it may be applied to individual rules to

83

% sum(L, N) :- The sum of the list L is T.

sum([], 0).

sum([X|Xs], T) :-

sum(Xs, S),

T = S + X.

Figure 4.4: List length/2 Sacrifices Tail Optimization

achieve symmetry. E.g., in the contrived example of Figure 4.5, inverting the base

case provides mode stability and allows the linear threaded translation to be applied to

the recursive rule. Again, such programming style is unusual in practice; programmers

are careful to maintain mode stability in order to reduce program complexity and aid

their own reasoning about calling modes.

% mg(P, T, I, R, B) :-

% The mortgage with principal P, time period in months T at least 1,

monthly interest rate I, and monthly repayment rate R, has balance B.

mg(P, T, I, R, B) :-

T > 1,

A1 = P * (I+1) - R,

mg(A1, T-1, I, R, B).

mg(P, T, I, R, B) :-

T = 1,

P = (B + R) / (1 + I).

Figure 4.5: The Mortgage Program with Asymmetrical Rules

84

fib(N,F) :- N > 0, f(N,_,F). % original wrapper

fib(0,1).

f(N,Z,Y) :- N > 0, % original recursive procedure

Z = Y + X,

f(N-1,Y,X).

f(0,1,1).

fib(N,F) :- N > 0, f(N,1,1,1,F). % wrapper for optimized procedure

fib(0,1).

f(N,I,A,B,F) :- I < N, % optimized recursive procedure

f(N,I+1,B,A+B,F).

f(N,N,_,F,F).

Figure 4.6: Linear Recursive Fibonacci Number Relations

4.2.2 Multiply Recursive Rules

It turns out that we can extend the definition of a linear transforming procedure

to situations where some rules make more than one recursive call.

4.2.2.1 Multilinear Recursion

Definition 4.2 (Multilinear Recursive Transforming Procedure) A multilin-

ear recursive procedure is similar to the linear recursive procedure of Definition 4.1

except that there are multiple recursive calls to P in a single rule, and parameters to

those calls are threaded from one recursive call to the next.

• base cases

Gk is Ỹ = T(X̃), for 1 ≤ k ≤ n

85

• recursive cases

For some c, m : 0 < k1 < l1 < · · · < kc < lc < m < n

1. Gk1
is X̃1 = T0(X̃), and Gki

is X̃i = Ti−1(Ỹi−1), for 2 ≤ i ≤ c

2. Gli is p(X̃i, Ỹi, Z̃)

3. Gm is Ỹ = Tc(Ỹc)

That is, for c recursive calls within a rule, we potentially have c+1 affine transforms

interleaved between the calls. The multilinear translations for thread and gather are

similar to their respective linear translations (4.2 and 4.4). In each case the recursive

cases change to reflect the multiple recursive calls, while the base cases and wrapping

rule are unchanged.

Translation 4.6 (Multilinear Threaded) Let P = 〈p, θ〉 be a multilinear trans-

forming procedure. An equivalent procedure is obtained by replacing each rule by

p′(X ,Y, Z̃) :- G1, · · · , Gn.

Where:

• base cases

Gk is Y = T0 ◦ X

• recursive cases

1. Gk1
is X1 = T0 ◦ X , and Gki

is Xi = Ti−1 ◦ Yi−1, for 2 ≤ i ≤ c

2. Gli is p′(Xi,Yi, Z̃)

3. Gm is Y = Tc ◦ Xc

86

and the wrapping rule is unchanged from Translation 4.2.

Translation 4.7 (Multilinear Gather) Let P = 〈p, θ〉 be a multilinear transform-

ing procedure. An equivalent procedure is obtained by replacing each rule by

p′(Y, Z̃) :- G1, · · · , Gn.

Where:

• base cases

Gk is Y = T

• recursive cases

1. Gki
is deleted

2. Gli is p′(Yi, Z̃)

3. Gm is Y = Tc ◦ Yc ◦ · · · ◦ T1 ◦ Y1 ◦ T0

and the wrapping rule is unchanged from Translation 4.4.

4.2.2.2 Non-linear Recursion

In the multilinear procedure of the previous section the computation was defined

as a single linear sequence of transform applications. We can further extend the

definition of multiply recursive procedures to include the case where a procedure P

adds transform applications, so that computation forms a tree. A nonlinear recursive

procedure differs from the linear recursive procedure of Definition 4.1 in that there

are multiple recursive calls to P in a single rule, and parameters of those calls are

copied from X̃, and summed into Ỹ .

87

Definition 4.3 (Simple Nonlinear Recursive Transforming Procedure) A non-

linear recursive procedure P consists of base and recursive case rules of the following

form:

• base cases

Gk is Ỹ = T(X̃), for 1 ≤ k ≤ n

• recursive cases

For some c, m : 1 ≤ k1 < l1 < · · · < kc < lc < m ≤ n

1. Gki
is X̃i = T1i

(X̃)

2. Gli is p(X̃i, Ỹi, Z̃)

3. Gm is Ỹ =
∑c

i=1 T2i
(Ỹi)

With nonlinear procedures threading is no longer an alternative, and a gather

technique is used instead. The nonlinear gather definition differs from the multilinear

gather case above in that transform parameters are copied before the recursive call,

and combined (gathered) afterwards, rather than passing through a chain of applica-

tions. Otherwise the translation is similar to previous gather forms, with the same

base case and wrapping rule.

Translation 4.8 (Nonlinear Gather) Let P be a nonlinear transforming proce-

dure. An equivalent procedure is obtained by replacing each rule by

p′(Y, Z̃) :- G1, · · · , Gn.

Where:

88

• base cases

Gk is Y = T

• recursive cases

1. Gki
is deleted

2. Gli is p′(Yi, Z̃)

3. Gm is Y =
∑c

i=1(T2i
◦ Yi ◦ T1i

)

and the wrapping rule is unchanged from Translation 4.4.

Previous definitions have allowed multiple base and recursive cases, but have re-

quired that transforms be applied to some distinguished vector of terms, say X̃. We

can extend our definitions to the case where transforms are applied to both X̃ and

Ỹ , so that goals Ỹ = T(X̃) and X̃ = T(Ỹ) are found in different rules of the same

procedure.

Definition 4.4 (Asymmetrical Nonlinear Recursive Transforming Procedure)

An asymmetrical

nonlinear recursive procedure differs from Definition 4.3 in that the base and recursive

rules may have two forms.

• base cases

For some k : 1 ≤ k ≤ n

Gk is Ỹ = T(X̃) or Gk is X̃ = T(Ỹ)

89

• recursive cases

For some k, l, m : 1 ≤ k1 < l1 < · · · < kc < lc < m ≤ n

1. Gki
is X̃i = T1i

(X̃)

2. Gli is p(X̃i, Ỹi, Z̃)

3. Gm is Ỹ =
∑c

i=1 T2i
(Ỹi)

or

1. Gki
is Ỹi = T1i

(Ỹ)

2. Gli is p(X̃i, Ỹi, Z̃)

3. Gm is X̃ =
∑c

i=1 T2i
(X̃i)

For purposes of translation, we choose one of the columns above as the preferred

form, and designate rules of that form to be symmetrical, and rules of the other to

be asymmetrical.

Translation 4.9 (Asymmetrical Nonlinear Gather) Let P = 〈p, θ〉 be an asym-

metrical nonlinear transforming procedure, so that there are both symmetrical (

⇀

⇁) and

asymmetrical (

⇀

↽) rules; and, w.l.o.g., let the left column of Definition 4.4 be chosen

as the symmetrical form. If, in the asymetrical rules below, the transform inverses Y

exist, an equivalent procedure is obtained by replacing each rule by:

p′(Y, Z̃) :- G1, · · · , Gn.

with goals replaced as follows:

base recursive
goal Gk Gki

Gli Gm

⇀⇁ Y = T true p′(Yi, Z̃) Y =
∑c

i=1(T2i
◦ Yi ◦ T1i

)
⇀↽ Y = T−1 true p′(Yi, Z̃) Y = [

∑c
i=1(T2i

◦ Y−1
i ◦ T1i

)]−1

The wrapping rule is unchanged from Translation 4.4.

Translation 4.9 replaces gather transforms in asymmetrical rules with inverses to

ensure that all rules have the same direction.

90

Asymmetry in a nonlinear recursive procedure occurs, e.g., when a CLP program

for resistive circuit analysis is written directly from the circuit laws. The source

text for analyze/3 in Figure 4.7, to find the relation between voltage and current in

terms of circuit resistances, is brief, consisting of just three rules. The base case, for

a resistor, uses Ohm’s Law to determine the relation between voltage and current.

The two recursive rules, for series and parallel ciruits, are from Kirchoff’s Laws, and

are asymmetrical: for circuits in series, the voltage drop is the sum of the individual

voltage drops, and the flow of current across circuit components is equal; while for

circuits in parallel, the voltage drop across circuit components is equal, and the

current flow is the sum of the individual current flows.

analyze(res(R), V,I) :-

V = I * R.

analyze(ser(C1,C2), V,I) :-

analyze(C1,V1,I),

analyze(C2,V2,I),

V = V1 + V2.

analyze(par(C1,C2), V,I) :-

analyze(C1,V,I1),

analyze(C2,V,I2),

I = I1 + I2.

Figure 4.7: The Original Form of the Circuit Procedure

For the mode analyze(+,?,?), where the circuit is ground, with all resistances

known, and applying Translation 4.9 for optimization, with the parallel rule chosen

for inversion since the base case is symmetrical with the series case, we get as a

result an optimized procedure text equivalent, modulo variable naming and arithmetic

expression format, to that of Figure 4.8.

91

wrapper(C,V,I) :-

analyze(C,R),

V = I * R.

analyze(res(R), R).

analyze(ser(C1,C2),R) :-

analyze(C1,R1),

analyze(C2,R2),

R = R1 + R2.

analyze(par(C1,C2),R) :-

analyze(C1,R1),

analyze(C2,R2),

R = (R1 * R2)

/ (R1 + R2).

Figure 4.8: The Thread Optimized Form of the Circuit Procedure

The optimized procedure finds the formula for equivalent resistance. This is an

automatic result of transform pair derivation and inversion to give rule symmetry, as

we see from the summation result transform terms for each of the three cases, given in

Figure 4.9. The compiler knows only to look for recursion patterns, derive transform

pairs, and seek rule symmetry.

Tres = 〈R, 0〉
Tser = 〈R1 + R2, 0〉

Tpar =
〈

R1R2

R1 + R2

, 0
〉

Figure 4.9: Transform Pairs for the Circuit Procedure

92

CHAPTER 5

Theoretical Properties

We restate for convenience the definitions for affine transforms from Chapter 3,

prove their properties, prove the correctness of the translations from Chapter 4, and

prove the correctness of translations for inequality constraints.

5.1 Properties of Affine Transforms

Definition 5.1 (Affine Transform) An affine transform T is a pair 〈A, ã〉 consist-

ing of an n×n matrix A and an n-vector ã, where the elements of A and ã are reals.

Such a pair defines a function on n-vectors, with application denoted by adjacency.

In addition, for transforms Ta = 〈A, ã〉 and Tb = 〈B, b̃〉, binary operations for ◦ and

+ are defined in terms of matrix multiplication and addition on the elements of these

pairs.

• Ta x̃ = x̃A + ã

• Ta + Tb = 〈A + B, ã + b̃〉

• Ta ◦ Tb = 〈AB, Ab̃ + ã〉

Proposition 5.1 (Basic Properties) Let An be the set of affine transforms of or-

der n, let + and ◦ be defined as above, and define TI = 〈I, 0̃〉 and T0 = 〈0, 0̃〉, where

93

I, 0 and 0̃ are the identity matrix, zero matrix, and zero vector, respectively. Then

for any transforms Ta, Tb and Tc from An, where Ta = 〈A, ã〉, Tb = 〈B, b̃〉, and

Tc = 〈C, c̃〉, each of the following is true.

• The operation + has the identity element T0; an additive inverse −T for all

transforms T; is associative; and commutative.

• For the operation ◦:

1. Ta ◦TI = TI ◦Ta = Ta, so that TI is the identity transform for ◦; and the

inverse T−1
a = 〈A−1,−A−1ã〉 exists if A−1 exists.

2. (Ta ◦ Tb) ◦ Tc = Ta ◦ (Tb ◦ Tc), so that ◦ is associative.

3. (Ta + Tb) ◦ Tc = Ta ◦ Tc + Tb ◦ Tc, so that the right distributive law holds

for ◦.

Proof: The properties of + follow directly from its definition and the properties of

matrix addition. The properties of ◦ follow almost as directly by expanding terms

using Definition 5.1.

Ta ◦ TI = 〈A, ã〉 ◦ 〈I, 0̃〉 = 〈AI, 0̃A + ã〉 = 〈A, ã〉

TI ◦ Ta = 〈I, 0̃〉 ◦ 〈A, ã〉 = 〈IA, ãI + 0̃〉 = 〈A, ã〉

Ta ◦ T−1
a = 〈A, ã〉 ◦ 〈A−1,−A−1ã〉

= 〈A−1A,−ãA−1A + ã〉 = TI

(Ta ◦ Tb) ◦ Tc = 〈BA, b̃A + ã〉 ◦ 〈C, c̃〉

= 〈CBA, c̃BA + b̃A + ã〉

94

= 〈CBA, (c̃B + b̃)A + ã〉

= 〈A, ã〉 ◦ (〈CB, c̃B + b̃〉)

= Ta ◦ (Tb ◦ Tc)

(Ta + Tb) ◦ Tc = (〈A, ã〉+ 〈B, b̃〉) ◦ 〈C, c̃〉

= 〈A + B, ã + b̃〉 ◦ 〈C, c̃〉

= 〈CA + CB, c̃A + c̃B + b̃ + ã〉

= 〈CA, c̃A + ã〉+ 〈CB, c̃B + b̃〉

= Ta ◦ Tc + Tb ◦ Tc

2

Note that left distributivity does not hold, since for Ta ◦ (Tb + Tc) and Ta ◦Tb +

Ta ◦ Tc, 〈BA + CA, (b̃ + c̃)A + ã〉 6= 〈BA + CA, (b̃ + c̃)A + 2ã〉 for ã 6= 0̃.

Proposition 5.2 (Composition) For affine transforms Tk . . .T1 applied to a vec-

tor x̃, the transforms may be combined freely by ◦ prior to application.

Tk . . .T1 x̃ = (Tk ◦ . . . ◦ T1) x̃

Proof: The base case of no applications is vacuously true. For the inductive case, con-

sider k applications where we know by the inductive assumption that the proposition

is true for k−1 applications. Let Tk = 〈B, b̃〉, and let Ta = 〈A, ã〉 = Tk−1◦. . .◦T1. Ta

exists since affine transforms are closed under the ◦ operation. Then for the inductive

case:

TkTa x̃ = Tk(Ax̃ + ã)

95

= BAx̃ + Bã + b̃

= 〈BA, Bã + b̃〉 x̃

= Tk ◦ Ta x̃

The compositions may be performed in any order since ◦ is associative. 2

Corollary 5.3 (Application is Equivalent to Composition with Projection)

An application of a transform T to a vector x̃ can be replaced with the projection of

the composition of T and 〈0, x̃〉.

T x̃ = T ◦ 〈0, x̃〉 0̃

Proof: Immediate from the definitions of application and composition. Note that

application of an affine transform to the vector 0̃ gives the vector half of the transform

pair. 2

5.2 Correctness of the Thread Translations

We wish to show the correctness of the translations given in Chapter 4, which,

when given a recursively transforming procedure for predicate p, give a translated

recursive procedure p′, and wrapper to call it.

Search trees will be useful in correctness proofs for the translations. Recall that a

search tree is a tree whose root is a query, and whose other nodes are also conjuncts of

goals, such that child nodes are reductions of parent nodes. Such trees have branches

whenever a procedure goal with multiple clauses is reduced. We will assume that

search tree branches are in clause order, and that goals are selected for reduction left-

to-right, so that goal reduction in a search tree corresponds to that used in Prolog.

96

Leaf nodes are either [] or fail, corresponding to successful reductions of the query

or failure, respectively. Reduction paths may also be infinite, corresponding to non-

terminating computation. Branch length in a tree will be measured by the number of

nodes where a call to p (or p′) is reduced, and those nodes will be said to be procedure

nodes.

Definition 5.2 (Isomorphic Search Trees) Let two search trees Sp and Sq have

root queries p(. . .) and q(. . .), and let p and q be recursive transforming procedures.

The trees Sp and Sq are isomorphic if they have the following characteristics:

• Similar structure: In Sp, procedure nodes, and the branches from those nodes,

are one-to-one and onto the procedure nodes and branches of Sq.

• Identical leaves: In Sp, leaves and their labels are one-to-one and onto those of

Sq.

The notion of search tree isomorphism is both less and more restrictive than equiv-

alence, since for success, failure, length of computation, and correctness, isomorphism

may not preserve correctness, while equivalence may not preserve computation length.

Proposition 5.4 (Linear Recursive Translations) Let P = 〈p, θ〉 be a linear

transforming procedure. The result of applying Translations 4.2, 4.4 or 4.5 to P

preserves success, failure, length of computation, and correctness.

Proof: Let Sp and St be search trees for the original procedure and its translated

form. Given isomorphism, we can show that correctness is preserved, since by Propo-

sitions 5.1 and 5.2, the forms of Figure 5.1 are equivalent.

Proving isomorphism amounts to showing that a goal of Sp is reduced only when

the corresponding goal of St would be reduced. The proof is by induction.

97

Ỹ = T2 . . .T2 T T1 . . .T1 X̃ (original)

Ỹ = (T2 ◦ . . . ◦ (T2 ◦ (T ◦ (T1 ◦ . . . ◦ T1)))) X̃ (thread)

Ỹ = (T2 ◦ . . . ◦ (T2 ◦ T ◦ T1) ◦ . . . ◦ T1) X̃ (gather)

Ỹ = ((T2 ◦ . . . ◦ ((T2 ◦ (T−1)−1 ◦ T1)
−1)−1 ◦ . . . ◦ T1)

−1)−1 X̃ (inverse gather)

Figure 5.1: Linear Recursive Thread Translations

For the base case, a search tree with one branch of depth 1, success would lead to

the following goals being reduced in Sp and St. Three cases are shown in Figure 5.3

for St, one for each translation, and ellipses are used for constraints involving terms

of Z̃. Trivial reductions unifying variables in calls with variables in heads are not

shown.

Note that those constraints involving affine transforms necessarily succeed if the

left hand side is unbound, since affine transform applications and compositions are

closed over their arguments, and the inverses are given to exist; such constraints will

be said to be functional.

For each of the three cases in the equations of Figure 5.2, (1) follows since we

are given that the base rule is chosen for reduction; (2) is by Propositions 5.1 and

5.2, and the fact that the constraints are functional; and (3) is by definition of the

respective translation (thread, gather, or inverse gather) for the base case rule of p.

The notation “I” is used to indicate the identity transform, since the form TI is too

easily confused with T1, which occurs in the recursive rules.

In the inductive case, we know that in order to increase the depth of a search tree,

a goal of p or p′ must be reduced using a recursive clause. Schematic forms for the

98

Thread:

p(X̃, Ỹ , Z̃) ⇔ Ỹ = T(X̃) (1)

⇔ X = I,

Y = T ◦ X , Ỹ = Y(X̃) (2)

⇔ p′(I,Y, Z̃), Ỹ = Y(X̃) (3)

Gather:

p(X̃, Ỹ , Z̃) ⇔ Ỹ = T(X̃) (1)

⇔ Y = T, Ỹ = Y(X̃) (2)

⇔ p′(Y, Z̃), Ỹ = Y(X̃) (3)

Inverse Gather:

p(X̃, Ỹ , Z̃) ⇔ Ỹ = T(X̃) (1)

⇔ Y = T−1, Ỹ = Y−1(X̃) (2)

⇔ p′(Y, Z̃), Ỹ = Y−1(X̃) (3)

Figure 5.2: The Base Case for Proposition 5.4

99

recursive rule of p, and the three rules for p′ resulting from translation, are given in

Figure 5.4.

For each of the three cases in the equations of Figure 5.5, (1) follows since a

recursive rule must be used to reduce the top level call to p; (2) is by the inductive

hypothesis; (3) and (4) are by Propositions 5.1 and 5.2, and the fact that the transform

constraints are functional; and (5) is by definition of the respective translation (thread,

gather, or inverse gather) for the recursive rule of p.

Proposition 5.5 (Multilinear Recursive Translations) Let P = 〈p, θ〉 be a mul-

tilinear transforming procedure. The result of applying Translations 4.6 or 4.7 to P

preserves success, failure, length of computation, and correctness.

Proof: (sketch) Generalization from the proof of Proposition 5.4 is straight for-

ward. Again translation gives isomorphic search trees, and again the thread and

gather forms compose the same sequence of transforms, with the thread translation

composing from right to left, and the gather translation grouping at each base case

transform, so that correctness is also preserved. 2

For nonlinear transforming procedures, the results of the individual recursive calls

within a clause are combined rather than threaded, so that we are comparing sum-

mation of vectors for the original procedure with summation of transforms for the

translated one.

Proposition 5.6 (Summation Distributes Over Application) The sum of trans-

form applications is equal to the application of the sum of the transforms.

n
∑

i=1

Ti(X̃) =

(

n
∑

i=1

Ti

)

(X̃)

100

Proof: Immediate from the the right distributivity of transform composition, Propo-

sition 5.1, and the interchangeability of application and composition, Proposition 5.3.

2

Proposition 5.7 (Nonlinear Recursive Translations) Let P = 〈p, θ〉 be a non-

linear transforming procedure, and let any transform inverses required by Translation

4.9 exist. The result of applying Translation 4.9, or 4.8 where applicable, to P pre-

serves success, failure, length of computation, and correctness.

Proof: It’s sufficient to consider the general case, Translation 4.9.

Let Sp and St be search trees for the original procedure and its translated form.

Proving isomorphism amounts to showing that a goal of Sp is reduced only when the

corresponding goal of St would be reduced. The proof is by induction.

Remember that Translation 4.9 applied to asymmetric nonlinear transforming

procedures, which may have two types of rules, distinguished by whether transforms

are applied to the parameter vectors X̃ or Ỹ . Since it’s necessary to translate the rules

so that compositions are consistently accumulated using a single transform parameter,

the form applying transforms to X̃ is arbitrarily chosen to be primary, and instances

of the other form are rewritten using inverses.

For the base case, a search tree with one branch of depth 1, there are two cases,

depending on whether a base rule instance is symmetrical with the primary form

or not. The table in Figure 5.7 gives the goals that would be reduced in case of

success, for both search trees, and for the symmetric and asymmetric forms, with the

symmetric case indicated by

⇀

⇁, and the asymmetric case, by

⇀

↽. As before, ellipses

are used for constraints involving terms of Z̃, and trivial reductions unifying variables

in calls with variables in heads are not shown.

101

The proof for the base case is identical either to the linear gather or inverse gather

base cases, respectively, since the translations are identical.

For each of the three cases, in the equations below, (1) follows since we are given

that the base rule is chosen for reduction; (2) is by Propositions 5.1 and 5.2, and

the fact that the inverse is given to exist; and (3) is by definition of the base case

translation for symmetric and asymmetric rules.

In the inductive case, we know that in order to increase the depth of a search tree,

a goal of p or p′ must be reduced using a recursive clause. There are two cases, one

each for symmetrical and asymmetrical rules. Schematic forms for the rules of p, and

those of p′ resulting from translation, are given in Figure 5.8. In this case the ellipses

stand not only for goals involving Z̃, which are unchanged by translation, but also

for constraints indexed by i, with 1 ≤ i ≤ c, where there are c recursive calls.

For each case, in the equations Figure 5.9, (1) follows since a recursive rule must

be used to reduce the top level call to p; (2) is by the inductive hypothesis; (3) and

(4) are by Propositions 5.1 and 5.2, and the fact that the transform constraints are

functional; (5) is by distributivity of summation over application, Proposition 5.6; (6)

is again by Proposition 5.2, and the fact that the constraint defining Y is functional;

for the asymmetrical case, (7) is by Proposition 5.1 and the existence of inverses;

and for both cases, the last equation is by definition of the respective translation

(symmetrical or asymmetrical nonlinear) for the recursive rule of p.

2

102

Sp : p(X̃, Ỹ , Z̃) . . . , Ỹ = T(X̃)

St : p(X̃, Ỹ , Z̃) p′(TI,Y, Z̃) , X = TI, . . . , Y = T ◦ X . . . , Ỹ = Y(X̃).

p(X̃, Ỹ , Z̃) p′(Y, Z̃) , . . . , Y = T . . . , Ỹ = Y(X̃).

p(X̃, Ỹ , Z̃) p′(Y, Z̃) , . . . , Y = T−1 . . . , Ỹ = Y−1(X̃).

Figure 5.3: Translation Schema for Base Case Rules

Sp : p(X̃, Ỹ , Z̃) :- . . . , Ũ = T1(X̃), . . . , p(Ũ , Ṽ , Z̃), . . . , Ỹ = T2(Ṽ), . . . , .

St : p′(TI,Y, Z̃) :- . . . , U = T1 ◦ X , . . . , p′(U ,V, Z̃), . . . , Y = T2 ◦ V, . . . , .

p′(Y, Z̃) :- . . . , p′(X , Z̃), . . . , Y = T2 ◦ X ◦ T1, . . . , .

p′(Y, Z̃) :- . . . , p′(X , Z̃), . . . , Y = (T2 ◦ X−1 ◦ T1)
−1, . . . , .

Figure 5.4: Translation Schema for Linear Recursive Rules

103

Thread:

p(X̃, Ỹ , Z̃) ⇔ Ũ = T1(X̃), p(Ũ , Ṽ , Z̃), Ỹ = T2(Ṽ) (1)

⇔ Ũ = T1(X̃), p′(I,V , Z̃), Ṽ = V(Ũ), Ỹ = T2(Ṽ) (2)

⇔ U = T1 ◦ I, p′(U ,V , Z̃), Ỹ = T2 ◦ V(X̃) (3)

⇔ X = I,

U = T1 ◦ X , p′(U ,V , Z̃), Y = T2 ◦ V , Ỹ = Y(X̃) (4)

⇔ p′(I,Y , Z̃), Ỹ = Y(X̃) (5)

Gather:

p(X̃, Ỹ , Z̃) ⇔ Ũ = T1(X̃), p(Ũ , Ṽ , Z̃), Ỹ = T2(Ṽ) (1)

⇔ Ũ = T1(X̃), p′(V , Z̃), Ṽ = V(Ũ), Ỹ = T2(Ṽ) (2)

⇔ p′(V , Z̃), Ṽ = V ◦ T1(X̃), Ỹ = T2(Ṽ) (3)

⇔ p′(V , Z̃), Y = T2 ◦ V ◦ T1, Ỹ = Y(X̃) (4)

⇔ p′(Y , Z̃), Ỹ = Y(X̃) (5)

Inverse

Gather:

p(X̃, Ỹ , Z̃) ⇔ Ũ = T1(X̃), p(Ũ , Ṽ , Z̃), Ỹ = T2(Ṽ) (1)

⇔ Ũ = T1(X̃), p′(V , Z̃), Ṽ = V−1(Ũ), Ỹ = T2(Ṽ) (2)

⇔ p′(V , Z̃), Ṽ = V−1 ◦ T1(X̃), Ỹ = T2(Ṽ) (3)

⇔ p′(V , Z̃), Y = (T2 ◦ V−1 ◦ T1)
−1, Ỹ = Y−1(X̃) (4)

⇔ p′(Y , Z̃), Ỹ = Y−1(X̃) (5)
2

Figure 5.5: The Inductive Case for Proposition 5.4

⇀⇁

p(X̃, Ỹ , Z̃) ⇔ Ỹ = T(X̃) (1)

⇔ Y = T, Ỹ = Y(X̃) (2)

⇔ p′(Y, Z̃), Ỹ = Y(X̃) (3)

⇀↽

p(X̃, Ỹ , Z̃) ⇔ X̃ = T(Ỹ) (1)

⇔ Y = T−1, Ỹ = Y(X̃) (2)

⇔ p′(Y, Z̃), Ỹ = Y(X̃) (3)

Figure 5.6: The Base Case for Proposition 5.7

104

Sp, ⇀⇁ p(X̃, Ỹ , Z̃) , . . . , Ỹ = T(X̃), . . . , .
⇀↽ p(X̃, Ỹ , Z̃) , . . . , X̃ = T(Ỹ), . . . , .

St, ⇀⇁ p(X̃, Ỹ , Z̃) , p′(Y, Z̃) , . . . , Y = T, . . . , Ỹ = Y(X̃) .
⇀↽ p(X̃, Ỹ , Z̃) , p′(Y, Z̃) , . . . , Y = T−1, . . . , Ỹ = Y(X̃) .

Figure 5.7: Translation Schema for Multiple Base Rules

Sp, ⇀⇁ p(X̃, Ỹ , Z̃) :- . . . , X̃i = T1i
(X̃), . . . , p(X̃i, Ỹi, Z̃), . . . , Ỹ =

∑

T2i
(Ỹi),

⇀↽ p(X̃, Ỹ , Z̃) :- . . . , Ỹi = T1i
(Ỹ), . . . , p(X̃i, Ỹi, Z̃), . . . , X̃ =

∑

T2i
(X̃i),

St, ⇀⇁ p′(Y, Z̃) :- . . . , p′(Yi, Z̃), . . . , Y =
∑

(T2i
◦ Yi ◦ T1i

),

⇀↽ p′(Y, Z̃) :- . . . , p′(Yi, Z̃), . . . , Y = [
∑

(T2i
◦ Y−1

i ◦ T1i
)]−1,

Figure 5.8: Translation Schema for Nonlinear Recursive Rules

105

⇀⇁

p(X̃, Ỹ , Z̃)

⇔ X̃i = T1i
(X̃), p(X̃i, Ỹi, Z̃), Ỹ =

∑

T2i
(Ỹi) (1)

⇔ X̃i = T1i
(X̃),

p′(Yi, Z̃), Ỹi = Yi(X̃i), Ỹ =
∑

T2i
(Ỹi) (2)

⇔ p′(Yi, Z̃), Ỹi = Yi ◦ T1i
(X̃), Ỹ =

∑

T2i
(Ỹi) (3)

⇔ p′(Yi, Z̃), Ỹ =
∑

((T2i
◦ Yi ◦ T1i

)(X̃)) (4)

⇔ p′(Yi, Z̃), Ỹ = (
∑

T2i
◦ Yi ◦ T1i

) (X̃) (5)

⇔ p′(Yi, Z̃), Y =
∑

T2i
◦ Yi ◦ T1i

, Ỹ = Y(X̃) (6)

⇔ p′(Y , Z̃), Ỹ = Y(X̃) (7)

⇀↽

p(X̃, Ỹ , Z̃)

⇔ Ỹi = T1i
(Ỹ), p(X̃i, Ỹi, Z̃), X̃ =

∑

T2i
(X̃i) (1)

⇔ Ỹi = T1i
(Ỹ),

p′(Yi, Z̃), X̃i = Y−1

i
(Ỹi), X̃ =

∑

T2i
(X̃i) (2)

⇔ p′(Yi, Z̃), X̃i = Y−1

i
◦ T1i

(Ỹ), X̃ =
∑

T2i
(X̃i) (3)

⇔ p′(Yi, Z̃), X̃ =
∑

(T2i
◦ Y−1

i
◦ T1i

(Ỹ)) (4)

⇔ p′(Yi, Z̃), X̃ = (
∑

T2i
◦ Y−1

i
◦ T1i

)(Ỹ) (5)

⇔ p′(Yi, Z̃), Ỹ = (
∑

T2i
◦ Y−1

i
◦ T1i

)−1(X̃) (6)

⇔ p′(Yi, Z̃), Y = (
∑

T2i
◦ Y−1

i
◦ T1i

)−1, Ỹ = Y(X̃) (7)

⇔ p′(Y , Z̃), Ỹ = Y(X̃) (8)

Figure 5.9: The Inductive Case for Proposition 5.7

106

5.3 Composition for Inequality-Related Affine Transforms

As relations, and depending on the mode, inequalities may serve as tests, for

control; as functions, for computation; and as fully relational constraints, requiring

the use of the solver. In the first two cases we can fit inequality constraints into the

framework of an affine transform-based threading analysis.

5.3.1 Redundant Threads of Affine Computation

The transform identities of Propositions 5.8, 5.9, and 5.10 generalize the notion of

partial future redundancy [JMM91] to inequality for vectors. In practice, inequality

constraints are used most often for control, as for termination in the numerically

counted loop of the mortgage program.

There are several points to note in this example from the guarded recursive rule of

the mortgage program: there is exactly one inequality; it is related to a variable from

the head; and that variable is part of a thread pair related by an equality. Taking

the second and third points first, of inequality and equality constraints related by

a thread variable, the three Propositions of this section share a common context

of just such inequality-guarded equality constraints. In addition, since an order-1

transform relation is the common case, an affine transform-based threading analysis

for inequality guards is typically equivalent to partial future redundancy, where there

is only a single constraint thread. Compile time analysis for inequality guards using

an affine transform framework, then, generalizes a partial future redundancy-oriented

analysis, and so simplifies implementation, replacing multiple types of analysis with

the one problem of constraint connected component transform derivation.

107

Proposition 5.8 (Simplified Linked Sequence) Let � be a binary relation on

real numbers from the set {<, >,≥,≤}, extended element wise to vectors of real num-

bers. Let C be a sequence of constraints X̃i = Ti(X̃i−1) ∧ Ui(X̃i) � 0, i = 1, · · · , n,

such that no other constraints on X̃1 . . . X̃n−1 exist, where, for each i : 1 < i ≤ n, we

have

X̃i = Ti(X̃i−1) ∧ Ui(X̃i) � 0⇒ Ui−1(X̃i−1) � 0 (5.1)

and the Ti and Ui are all ground affine transforms. Then C has exactly the same

solutions as

X̃n = (Tn ◦ · · · ◦ T1)(X̃0) ∧ Un(X̃n) � 0.

Proof:

Since by Proposition 5.2, X̃1 = T1(X̃0), . . . , X̃n = Tn(X̃n−1) and X̃n = (Tn ◦ · · · ◦

T1)(X̃0) are equivalent, we need only to show that solutions are preserved for the

inequalities. In the following, let C ′ refer to the simplified set of constraints.

⇒

By definition of C we have that Ui(X̃i)�0, i = 1, · · · , n, which subsumes Un(X̃n)�0.

⇐ By induction.

The base case of n = 1 is vacuously true since C and C ′ are the same.

108

For the inductive case, where n > 1 and the proposition is true for n− 1, the first

statement below is by definition of C ′, the second by assumption, the third by the

inductive hypothesis, and the fourth by conjunction of the previous statements.

Un(X̃n) � 0 (5.1)

Un(X̃n) � 0 ⇒ Un−1(X̃n−1) � 0 (5.2)

Un−1(X̃n−1) � 0 ⇒ Ui(X̃i) � 0, i = 1, · · · , n− 2 (5.3)

Ui(X̃i) � 0, i = 1, · · · , n (5.4)

2

Corollary 5.9 (Early Failure Property) Let C be a sequence of constraints as

defined in Proposition 5.8. Let I be an initial subsequence of k pairs of equality and

inequality constraints in C. I is satisfiable if and only if the inequality

Ũk((Tk ◦ · · · ◦ T1)(X̃0)) � 0

is satisfiable.

Proof:

By Proposition 5.8, with n replaced by k throughout. 2

109

Proposition 5.10 (Satisfiability Property) Using the definitions in Proposition

5.8, if for each Ũk we have ∃X̃(Ũk(X̃)� 0) satisfiable and (Tk ◦ · · · ◦T1)
−1 exists, the

inequality

Ũk((Tk ◦ · · · ◦ T1)(X̃0)) � 0

is satisfiable.

Proof:

X̃0 = (Tk ◦ · · · ◦ T1)
−1 (X̃k) exists, by the existence of some vector X̃k such

that (Ũk(X̃k) � 0), by the existence of the inverse, and the fact that by definition

of C, there are no other constraints on X̃0. In addition, by definition of C we have

X̃i = Ti(X̃i−1)∧Ui(X̃i)�0⇒ Ui−1(X̃i−1)�0, so that by a straight forward induction

Ũk((Tk ◦ · · · ◦ T1)(X̃0)) � 0 must be satisfiable. 2

5.3.2 The Composition of Inequalities by Affine Transforms

Chains of inequality constraints may be used to compute values, and in that case

we would hope to accumulate such computation as the composition of ground affine

transforms, in order to enable the same kind of imperative computation already seen

for equalities. Although the preconditions for application of Proposition 5.11 below

may seem restrictive, in particular that there be transform inverses, in practice such

transforms are purely additive, with identity matrices as the left hand side, and in

that case there is no problem.

110

Proposition 5.11 (Simplified Affine Transformation Chain) Let C be a finite

sequence of constraints X̃i � Ti(X̃i−1), i = 1, . . . , n such that no other constraints on

X̃1 . . . X̃n−1 exist, all of the affine transforms Ti are invertible, and for all Ti, and

any X̃ and Ỹ, the following ordering and monotonicity conditions apply.

X̃ � Ỹ ⇔ Ti(X̃) � Ti(Ỹ) (5.1)

Ti(X̃) � X̃ (5.2)

Then C has exactly the same solutions as X̃n � (Tn ◦ · · · ◦ T1)(X̃0).

Proof:

⇒ By induction. Let Tj be Tk ◦ · · · ◦ T1, and let X̃j = Tj(X̃0).

For k = 1, where there are no compositions, the proposition is vacuously true;

X̃1 � T1(X̃0) has the same solutions as itself.

For the inductive case, the proposition is true for k, and we wish to show that it

is true for k+1. Then for the inequalities below, 1 follows by definition of C, 2 by the

inductive hypothesis, 3 by 1 and the monotonicity condition, 4 follows from 1 and 3

by transitivity, and 5 from 4 by Proposition 5.2, composition of transforms.

X̃k+1 � Tk+1(X̃k) (5.1)

X̃k � Tj(X̃0) (5.2)

Tk+1(X̃k) � Tk+1(Tj(X̃0)) (5.3)

X̃k+1 � Tk+1(Tj(X̃0)) (5.4)

X̃k+1 � Tk+1 ◦ Tj(X̃0) (5.5)

⇐ By induction.

111

For i = 1, X̃1 � T1(X̃0) is a solution to itself.

For i+1, let X̃s�Ti+1◦· · ·◦T1(X̃0) be satisfiable. Also, for brevity, let the result of

an application Ti ◦· · ·◦T1(X̃0) be named Ãi. We need to construct some X̃ such that

X̃s�Ti+1(X̃), X̃�Ti(Ãi−1), and then by the inductive hypothesis the X̃ can be used to

construct a solution to the subsequence of constraints X̃i�Ti(X̃i−1), . . . , X̃1�T1(X̃0).

By the invertibility of Ti+1, and using X̃s, we can define X̃ε.

X̃ε = (T−1
i+1(X̃s) + Ãi)/2

Since by definition X̃s � Ti+1(Ãi), then by cancellation of inverses T−1
i+1(X̃s) � Ãi,

and by construction X̃ε lies between T−1
i+1(X̃s) and Ãi.

T−1
i+1(X̃s) � X̃ε � Ãi

Then by the ordering assumption X̃s � Ti+1(X̃ε), and by definition of Ãi, X̃ε �

Ti(Ãi−1), so that X̃ε is the desired X̃.
X̃s � Ti+1(X̃ε), X̃ε � Ti(Ãi−1)

2

Examples where chains of inequality constraints are used to compute values do not

readily come to mind, since as previously noted, inequality guards are the frequent

case. Note, however, that the nonlinear interpreted function symbols max/2 and min/2

are used to compute values, e.g. in Figure 5.10, where the max list/2 procedure finds

the largest value in a list, as might be used in a critical path analysis.

The min/2 and max/2 CLP(R) arithmetic operators have not been considered

until now, with the focus up to this point on numerical constraints that use only the

traditional arithmetic function symbols of (+, -, *, /) to build term trees. The min/2

and max/2 operators use nonlinear delay in case of unknown arguments, and compute

the minimum or maximum directly otherwise.

112

max_list([], _) :- fail.

max_list([X|Xs], M) :-

max_list(Xs, X,M).

max_list([], M,M).

max_list([X|Xs], L,M) :-

A = max(L,X),

max_list(Xs, A,M).

alt_max_list([], M,M).

alt_max_list([X|Xs], L,M) :- X > L, alt_max_list(Xs, X,M).

alt_max_list([X|Xs], L,M) :- X <= L, alt_max_list(Xs, L,M).

Figure 5.10: Using max/2 to Find the Maximum of a Sequence

In Figure 5.10, for the case of a ground list, loop control is provided by the list

length, and the max/2 constraints may be computed instead by ground inequalities.

Although this may be expressed by a source translation, it’s at the cost of an addi-

tional recursive rule, and the loss of deterministic WAM-style indexing; e.g. although

alt max list/3 is deterministic, the analysis required to see this is more elaborate

than that for max list/3. In practice, then, we optimize threaded occurrences of the

max/2 and min/2 function symbols directly, without an intervening source translation,

and Proposition 5.11 above serves as a framework in which to argue the correctness

of transform composition for chains of equality constraints involving the max/2 and

min/2 operators.

113

CHAPTER 6

Results

Once given the correctness of the thread translations, we can compare the time

cost of symbolic application with ground composition, both in theory and practice.

In particular, for the latter case, it’s of interest to determine under what conditions

the greatest speedup occurs.

6.1 Theoretical Expectations

Though we expect ground computation such as multiplication to be faster than

solver operations, which must both perform arithmetic and traverse pointer struc-

tures, it is also true that for calls to simply recursive procedures, with m iterations

and n arguments, the original form requires O(mn2) solver operations, and the rewrit-

ten one, O(mn3) multiplications, and it may not be obvious that a time savings occurs

when the thread optimization is applied.

The time complexity of the original and optimized forms is actually the same,

however, since each arithmetic equality satisfiability test by the solver during the

iteration involves O(n) other terms, and a speedup may be expected as data structure

construction and traversal costs are avoided.

114

6.2 Benchmark Methods

Here we discuss the CLP(R) procedures used for testing, § 6.2.1; and the means

used to measure elapsed time and gather multiple query times, § 6.2.2 and § 6.2.3.

6.2.1 Examples

Optimizing compilation by the CLP(R) compiler has been performed for each

of the four procedures defined in Figure 6.1. The definitions in this figure reflect

the style used by experienced programmers, in an attempt to ensure that the most

efficient code is used as a baseline for comparison.

sum([], T, T).

sum([X|Xs], S, T) :-

sum(Xs, S+X, T).

dot([], [], X, X).

dot([A|As], [B|Bs], X, Y) :-

dot(As, Bs, X+A*B, Y).

mg(P, T, I, R, B) :-

T > 0,

mg(P*(1+I)-R, T-1, I, R, B).

mg(P, 0, I, R, P).

analyze(res(R), V, I) :-

V = I*R.

analyze(ser(C1, C2), V, I) :-

analyze(C1,V1,I),

analyze(C2,V2,I),

V = V1+V2.

analyze(par(C1, C2), V, I) :-

analyze(C1,V,I1),

analyze(C2,V,I2),

I = I1+I2.

Figure 6.1: Benchmark Test Examples

Whether for brevity or in a hope to avoid emulator overhead for the explicit

constraints, one common idiom has expressions passed as arguments. In addition,

programmers for CLP languages are intensely aware of issues arising from clause

selection, and vary clause order accordingly. In most of the examples, the base clause

is put first, to improve termination for non-ground first arguments. This costs nothing

115

for the frequent case of a ground symbolic first argument, since at each iteration

indexing selects the appropriate clause in constant time. In mg/5, though, the loop

clause is instead first, so that during the frequent case of repeated iteration, we avoid

shallow backtracking caused by the failed equality test for time equal zero. In this

case the programmer has explicitly chosen to improve execution speed for known T,

even at the cost of non-termination otherwise. Again, note that these choices both

reflect the style used by experienced programmers, and more importantly ensure that

the most efficient CLP(R) source code available is used as the baseline in calculating

speedups.

6.2.2 Measuring Time

The CLP(R) system includes two library procedures, ztime/0 and ctime/1,

to zero and sample the clock respectively. Using the standard Unix system call

gettimeofday(), these procedures provide microsecond resolution, at the cost of an

OS system call. With this come three problems: the resolution is too low, since for

the wrapper – base case measurements used in determining wrapper overhead we are

in the low single digit microsecond range, and one digit of precision is insufficient;

the system call is time consuming, serving to pad time measurements and reduce the

accuracy of data; and worst of all, there is a kernel check for time slice exhaustion

before returning from the system call, so that the likelihood of preemption during ob-

servation increases, both due to the elapsed time in the system call, and the unwanted

scheduling check.

For all these reasons, the x86 rdtsc instruction to read the processor time stamp

counter is used instead. The inline assembly code to execute and read the results of

116

this instruction were adopted from the similar macros in the Linux kernel, with the

help of [Sta96] to explain the incantations to gcc for the inline assembler directives.

The resolution is in the nanosecond range, there is no system call overhead, and the

OS scheduler is left undisturbed.

6.2.3 The Test Harness

A test harness used to gather time measurements can be implemented at any one of

three successively tighter degrees of system integration. First, and most coarse, would

be a shell script that fed individual queries to distinct CLP(R) process instantiations;

second would be a CLP(R) script that ran any number of individual queries from the

top level; and third would be a CLP(R) procedure that looped to make those queries.

Eventually all three forms were tried. The first, where each query runs in a distinct

CLP(R) process, is undesirable due to its high overhead and sensitivity to initial

conditions; the third, where all looping is controlled within the CLP(R) language

itself, is not feasible, since the CLP(R) system runs out of solver variables. The second

approach, where there are multiple top level queries to a single CLP(R) process, was

ultimately used instead.

For each (query set, example procedure, optimization level) combination, a single

instance of CLP(R) compiles and executes a script and its inclusions, where the

consult/1 library procedure plays the role of a C preprocessor include statement.

The included queries are written in such a way that all solver variable records used

during query calculation are released for reuse from one query to the next.

117

6.3 Plots of Observations

In this section we observe plots of elapsed time measurements, as a function of loop

iterations, § 6.3.1; breakeven points for wrapper overhead, § 6.3.2; and the variance

of time over repeated samples, § 6.3.3.

Although we will look at the data in some detail, it is important to keep in mind

our eventual goal: to determine the breakeven point for optimization, and expected

speedup once that is passed, for the guidance of CLP compiler and application devel-

opers. Although this section and the next consider a number of performance-related

questions, ultimately their purpose is simply to settle those two issues.

6.3.1 Time as a Function of Loop Iterations

Execution times for original and thread-optimized versions of the sum/3, dot/4,

mg/5, and analyze/3 procedures, are given in Figure 6.2. The query arguments were

defined to vary the number of loop iterations over the range 0..500, and in each case,

the graph for the original procedure lies above that for the optimized procedure.

Looking at the plots for each of the examples in Figure 6.2, where elapsed time

is plotted against loop iterations over the range 0..500, we see significant asymptotic

speedups, with the optimized loops running faster than the original procedures in

every case. This is our main result; the rest of this section and § 6.4 serve to confirm

and quantify it.

There remain a number of related issues that complicate the measurement of the

speedups; looking at the plots, we see outliers, serial correlation, and for the original

mg/5 and circuit/3 procedures, some apparent nonlinearity, so that time appears

to increase quadratically with loop count.

118

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

Figure 6.2: Performance for Original and Optimized Procedures

119

In addition, although it is not visible at this scale, unless we take the appropri-

ate precautions, least squares fits tend to calculate negative Y intercepts, with the

nonsense interpretation that execution of the base case takes us back in time.

For now, note that outliers typically fall above the mean and are correlated with

the number of iterations, so that there is both bias and heteroscedasticity. Both

these factors tend to skew the slope of an OLS fit counterclockwise, and decrease the

intercept in compensation.

Leaving for now the bias, we can compensate for the heteroscedasticity by weight-

ing the observations. Since we expect the largest outliers to be caused by processor

interrupts, with the probability of such events proportional to the length of compu-

tation, and equivalently the number of iterations, we expect the deviation to also be

proportional to the loop count. To compensate, we weight the squared residual for

each iteration i by 1/(i + 1)2, in effect duplicating low iteration observations, so that

the base case test is counted 500 times, and the test for i = 500 once.

We can express the intuition for this two ways. If we want preempts to occur with

equal probability over all the observations, then lower indexed tests should occur more

often than higher ones, so that the total time in the tests for each iteration index is

equal. Ideally, we would meet this goal by making multiple observations, about which

more in § 6.4, but in this case, where we only have 501 observations per example, we

use weights.

Or, from another viewpoint, since the actual equation for the elapsed time to

finish a loop is a recurrence relation, with the time for any iteration a function of the

previous, a sequence of one observation each over 0..n iterations measures (n(n+1))/2

120

rule selections, with the low indexed iterations occurring proportionately more often

during instantiation of the recurrence than higher ones.

In any case, the weights prevent high iteration outliers from skewing the slope, and

shift the most accurate estimate of the speedup from the center of the X axis, around

i = 250, towards the origin, where we want it, in order to look at the breakeven point,

about which more in § 6.3.2. And, most important of all, weights remove time travel

from our speedup calculations.

We’ll look at serial correlation as a part of the error analysis in § 6.3.3; for now,

note that a likely explanation is cache thrashing, and that we’ll regard that as simply

part of the cost of computation; it affects variance, and so the analysis of the data,

but not our model of speedup.

As for nonlinearity, note that both quadratic and linear equations are fit to the

data for the original mg/5 and circuit/3 procedures, and that the linear fits trend

below the mean. For mg/5, this is reasonable due to the inequality constraint pro-

viding the loop test, and illustrates the way in which thread optimization can lead

to relatively greater speedups when applied to inequality as opposed to equality con-

straints.

It’s possible that the nonlinearity for the original circuit/3 arises from some

nested loop in the CLP(R) solver. Equations in the solver are represented as para-

metric forms, where the choice of parametric variable is made when the equation

is created according to reasonable and ordinarily effective heuristics [JMSY92b]. It

may be, however, that for circuits with mixed parallel and series elements, the tree

structured constraint chains created by alternating par/2 and ser/2 rule selection

121

involve suboptimal choice of parametric variables, with the result that checking equal-

ity constraints for satisfiability, which is theoretically quadratic and ordinarily linear,

becomes in this case n lg n.

6.3.2 Break-even Points for Wrapper Overhead

The wrapper overhead leads to a greater execution time, and so a larger y in-

tercept, for the optimized procedures The average execution times for the optimized

procedures drop below those for the originals by the second, third, or fourth iteration.

In Figure 6.3, break-even points are calculated first by OLS fit for a 100 samples

of each iteration limit over the range 0..10, and second by averaging individually for

each point over the range 0..4.

6.3.3 Outliers as a Function of Clock Tic Phase

When elapsed time per query is graphed against absolute wall clock time, query

time peaks caused by interrupts occurring at the timer tic frequency of 100 hz are

clearly visible. The peaks are intermittent, since clock tics sometimes fall outside

the observed time interval, and vary in height since the operating system may spend

more or less time on houskeeping and other processes during the preemption.

Since the frequency is known, and the phase stable, outliers due to preemption

are readily identified. Looking at the magnitude of the preempt time spikes, we

see that the minimum preempt time, presumably that for clock timer tic interrupt

processing and context switch overhead alone, is of the same order of magnitude as

the time variations due to cache state, and so can be ignored. Considerably longer

preemption times, however, reflect time waiting on IO or devoted to other processes,

122

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

5

10

15

20

0 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Sum List Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Dot Product Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Mortgage Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
xe

cu
tio

n
T

im
e

(µ
s)

Circuit Iterations

Figure 6.3: Break-even Plots

123

and so justifies elimination of the data point as a measurement error, an observation

not reflecting the time of actual computation.

6.4 Conclusions About Speedups

After the initial data collection used for the plots of the previous section, addi-

tional, larger datasets were generated in order to estimate the incremental speedup

per iteration, and determine the break-even points accurately. Tables giving the re-

sults for the incremental speedup and exact break-even point are presented in § 6.4.1

and § 6.4.2, respectively.

Recall from the previous section that, for iteration counts uniformly distributed

over some range 0..N, the observation errors for the high magnitude index data points

overwhelm those closer to zero, an example of a problem known as heteroscedasticity,

the correlation of errors with the independent variable; and that the solution to this

problem is some form of weighting.

Of the three approaches to weighting the data, each has its own problems. Substi-

tuting variables, here
√

I, gives the wrong independent variable; we want the actual

relation between iteration count and time. Weighting the error inversely with I is

computationally convenient, but statistically wrong, as it underestimates the actual

error. Finally, weighting the number of observations when that is possible works fine,

but may require a very large number of observations. To see this, consider that for

the iteration count range of 0..500, and with exactly one observation for I = 500, we

need 501 observations for I = 0 to meet the weighting requirement, i.e. the sample

size for a range of 0..N is O(N 2).

124

The data described in this section was collected using the third approach. A quar-

ter of a million (test, index) pairs were randomly generated, where the test was one

of the benchmark examples, the mortgage, dot product, sum, and circuit programs,

and the index was an integer from the range 0..500 with iteration count frequency in-

versely proportional to its magnitude. These pairs were then used as query inputs to

gather 125,000 observations each for the original and optimized forms of the example

programs, with the result that the expected likelihood of an observation for I = 500

for any one of eight (test, compilation mode) choices was 0.125. More to the point,

many low index observations were made, for use in measuring wrapper overhead by

the determination of the break-even iteration count.

6.4.1 Asymptotic Speedup

Execution time as a linear function of iteration count was estimated using OLS,

and is given in Figure 6.4. Since the absolute speedup varies with iteration count, due

to the diminishing fraction of wrapper overhead, the most useful measure of the thread

optimization is the asymptotic speedup, which can be reported without qualification

by some number of iterations. Given linear relationships between iteration count

and execution time for the original and optimized forms, the asymptotic speedup is

also the ratio of their slopes. Since OLS minimizes error towards the center of the

data, the intercept figures are not particularly meaningful. The values of interest in

Figure 6.4, then, are in the last two columns, the execution time slopes and resulting

asymptotic speedup.

125

Query Compilation Y-intercept Slope Speedup
sum/3 original 1.02475 0.63731 2.5768

optimized 1.69336 0.24733
dot/4 original 1.12801 0.96229 1.6160

optimized 1.87581 0.59548
mg/5 original 2.85539 2.34705 3.7461

optimized 5.00983 0.62653
cir/3 original 1.40345 1.52007 1.9482

optimized 1.93746 0.58991

Figure 6.4: Speedups

6.4.2 Break-even Point Statistics

The break-even point for optimization speedup, where solver time in the original

code compensates for wrapper overhead, is in the low single digit iterations, from one

to three for the benchmark examples.

The break-even number of iterations is given in Figure 6.5, along with the number

of data points collected for that particular loop count; the mean time, µ; the difference

in average times, or break-even margin µorig−µopt; the standard error, σ; and the ratio

of the break-even margin to the maximum of the standard errors, (µorig− µopt)/σorig.

In each case the number of data points is sufficiently large, and the error relative

to the crossover margin time sufficiently small, that the results are overwhelmingly

significant.

We can interpret the results as meaning that, for the common case, the optimiza-

tion savings for two recursive calls is sufficient to pay the wrapper overhead, both the

call itself as well as the mode checks and type conversions during transform appli-

cation. In unusual cases, where execution time is dominated by structure traversal,

such as dot/4, where the arithmetic is simple and there are two lists to traverse,

126

Query Break-even N Avg Time Difference σ T test
dot/4 3 131 4.14992 0.03333

3.81702 0.005364
0.33290 9.99

sum/3 2 144 2.45726 0.0288
2.18718 0.003923

0.27018 9.38
cir/3 2 121 4.01488 0.05344

3.10463 0.006066
0.91935 17.03

cir/3 1 113 6.26035 0.05249
5.79735 0.01072

0.46300 8.83

Figure 6.5: Break-even Points for Optimization

break-even may not occur until the third recursive call; and in other cases, where the

arithmetic is more involved, requiring checks for potentially nonlinear multiplication

expressions in constraints, such as occur in the circuit program, breakeven may occur

after just one recursive call.

127

CHAPTER 7

Conclusions and Future Work

This thesis makes a number of contributions to CLP optimization. It defines a

broad class of CLP language optimizations, the thread optimizations, which apply

to a wide variety of recursive procedures, and to any practical CLP language; proves

their correctness within the CLP scheme; gives instances of constraint threads for nu-

meric constraints; describes an implementation of the thread optimization of numeric

constraints, for an instance of the CLP family, CLP(R); and demonstrates that this

implementation achieves a significant speedup for optimized programs.

As a result of this work, I conclude that, for those languages with real constraints

implemented by floating point arithmetic, e.g. CLP(R), compilers should perform the

thread optimization. Theoretical conclusions supporting this main point are described

in more detail in § 7.1, and practical ones, in § 7.2.

7.1 Conclusions Drawn from CLP Analysis

For the CLP langauges, there is a large class of recursive procedures, the deter-

ministically counted loops with numeric equality constraints, for which significant

opportunities for loop optimization exist, as constraints are replaced with ground

128

numeric computation. The notion of a counted loop is general, including both or-

dinary incrementing and decrementing loops as well as loops controlled by structure

traversal, and requiring only that the loop limit be ground.

Opportunities for optimization can be identified by a five-level analysis: clas-

sification of multiplicative expressions in numeric terms as threaded or nonlinear;

collection of equality constraints into groups, the constraint connected components;

affine transform derivation from the augmented matrix of the connected component;

classification of clause recursion and transform threading pattern as either sequence

or tree-structured; and matching of clauses within a predicate to check mode stability.

This five-level compile-time analysis is computationally reasonable, deferring theoret-

ically difficult problems to runtime mode checks, which are either moved outside the

loop, or performed at no extra cost as part of type conversions.

For a recursive procedure with one of the frequent recursion patterns, typically

loop-threaded or tree-structured, and given the affine transforms identified above,

there are source-to-source translations that replace constraints formed by transform

application with ground computation via transform composition. These thread trans-

lations preserve success, failure, length of computation, and correctness.

7.2 Conclusions From Implementation

Transform order is low, typically one or two, so that implementation of the thread

optimization is practical, even though the time complexity of tranform derivation is

quadratic, and translation cubic, for the transform order.

129

Code bulk increase is reasonable: there are only two cases for typical wrappers,

and at most three for all cases seen so far, and optimized loops are not any larger in

practice than the originals.

Speedups depend on the ratio of numerical computation to structure traversal

overhead, being greatest for the loops that are most purely numerical, and of those,

the loops with inequality guards, which are converted to tests. Speedups reach above

300% in this ideal case, declining to around a factor of two for single list traversal

loops.

The current implementation is a proof of concept: the speedups above are conser-

vative, since emulator overhead proved to be a significant part of loop kernel execution

time, so that the use of native code rather than byte code targeted compilation might

see considerable improvements. For purely numerical loops, e.g. mg/5, the loop ker-

nel can be compiled down to equivalent imperative assembler, and there the speedup

should be much greater. It follows that an affine transform thread-based analysis

should be an standard part of future CLP(R)-family CLP languages compilers.

7.3 Future Work

Thread analysis gives a compact, abstract representation for linear numerical com-

putation, and suggests other source-to-source translations besides the fundamental

rewriting of affine transform application to composition. In some cases these new

translations are required in order to perform the thread optimization, while in others,

the translations are enabled by thread optimization.

The most significant goal beyond the current implementation, which is a proof

of concept, is the additional implementation effort needed to create a public release.

130

Such an effort would require that the runtime system, and in particular the solver,

which is IBM copyright code and no longer supported, either be reimplemented from

scratch, or else replaced with publicly available code, e.g. ported from a system such

as HAL, [DdlBH+99]. Such an effort is purely a matter of implementation, and so

will not be discussed furthur here. The remainder of this section focuses instead on

furthur issues in CLP(R) optimization, including additional source translations.

7.3.1 Code Hoisting

Transform derivation suggests opportunities for other optimizations, such as code

hoisting, that may be applied either as part of, or else following, thread translation.

Neither coefficient subexpression elimination, e.g. I+1 in mg/5, nor successive

doubling, e.g. lg time computation of Fibonacci numbers by successive doubling of

the power to which the Fibonacci state matrix is raised, has been implemented.

Note that successive doubling isn’t applicable to loops controlled by structure

traversal, where transform terms are extracted from structured terms and are free

to vary dynamically. It applies only to numerically counted loops, and only when

applicable to the entire loop body, so that it makes no sense to compose constant

transforms such as loop increment or decrement alone. It’s not yet clear how fre-

quently opportunities to apply successive doubling might occur in practice, beyond

the canonical examples given above.

7.3.2 Computing With Inequalities

Although Proposition 5.11 demonstrates how affine constraints can be composed

to represent chains of inequality constraints used to compute values, the current

implementation only optimizes procedures where inequalities serve as tests, to provide

131

control, in accordance with Proposition 5.8. No implementation work has been spent

on optimization of inequality chains such as are described in Proposition 5.11, not

least because no source code candidate for optimization has been found.

As mentioned previously in § 5.3.2, optimization of computations using the min/2

and max/2 function symbols language might be of more significance in practice, since

programmers use them in place of inequality constraints within loops, e.g. the critical

path example included with the CLP(R) distribution. Optimization of ground min/2

and max/2 expressions for structure traversal in loops has not yet been added to

the implementation. Note that multiple specialization by itself is not new, and the

optimization would work via specialized code generation, without a source-to-source

translation.

7.3.3 Adding Mode Coverage

The current implementation of source translation could be extended to provide

optimization for additional modes, § 7.3.3.1, though sometimes at the cost in analysis

of inferring additional constraints, § 7.3.3.2.

7.3.3.1 Finding Secondary Disjoint Modes

Some procedures have multiple modes that nevertheless may be represented with

a single mode declaration. The implementation of the thread optimization finds all

these modes together, and supports them by a single procedure, at a potentially large

savings in code space against the case where specialized versions are created for each

mode. E.g. for mg/5 the declaration mg(?,+,+,?,?) includes eight modes, as P, R,

or B are known or unknown; the single specialized form is an eight fold savings over

132

distinct versions for each of these modes; and there are no other useful modes, so that

the single mode declarations is sufficient.

In some other cases, however, there are multiple instances of the thread optimiza-

tion with disjoint modes, e.g. length(+,-) and length(-,+), as the list or length is

known; fib(+,-) and fib(-,+), as the input or output to the Fibonacci function is

known; and similarly for fac(+,-) and fac(-,+), factorial. In these cases the current

implementation finds only one of the available modes for optimization, and ignores

the other. The rsulting code is correct, since the default case covers the remaining

modes, but not as fast in those cases as it could be.

The implementation could be enhanced to search through the additional modes,

trading compile time analysis for additional optimization. This would serve to find

the additional mode for length/2, though not by itself for fib/2 or fac/2. There

programmers typically write code with one particular mode in mind, with one in-

equality constraint of two candidates chosen for that mode. In this case, analysis

must also infer the additional constraint in order to optimize the secondary mode.

7.3.3.2 Creating Additional Modes

The factorial relation provides an example of how accumulator pair arguments

enable the thread optimization, tail recursion, and full mode coverage all together.

In Figure 7.1, the left version of fac/2 is tail recursive, and the thread opti-

mization can only convert the loop counter decrement and inequality tests to ground

computation, while the version on the right reorders the multiplication constraint to

follow the recursive call, gaining ground computation for all arithmetic in the recur-

sive rule, but at the cost of wasting the last call optimization on a constraint, rather

than the recursive call as we would prefer, so that we lose tail recursion.

133

fac(1,1).

fac(N,F) :-

N > 1,

K = N-1,

F = N*A,

fac(K, A).

fac(1,1).

fac(N,F) :-

N > 1,

K = N-1,

fac(K,A),

F = N*A.

Figure 7.1: Reordering Constraints Loses Tail Recursion

fac(N, F) :--

fac(N, 1,F).

fac(1, F,F).

fac(N, A,F) :-

N > 1,

F = N-1,

B = A*N,

fac(K, B, F).

fac(N, F) :-

num(N),

!,

fac_opt1(1,N, 1,F).

fac(N, F) :-

num(F),

!,

fac_opt2(1,N, 1,F).

fac(N, F) :--

fac(N, 1,F).

fac_opt1(N,N, F,F).

fac_opt1(I,N, A,F) :-

I < N,

J = I +1,

B = A*I,

fac_opt1(I,H, B,F).

fac_opt2(N,N, F,F).

fac_opt2(I,N, A,F) :-

A < F,

J = I +1,

B = A*I,

fac_opt2(I,H, B,F).

Figure 7.2: Accumulator Pairs and New Constraints Increase Mode Coverage

In Figure 7.2, the leftmost wrapper fac/2 and called loop fac/3 indicate how

CLP(R) programmers typically use an accumulator pair to enable the solver to find

ground computation at runtime while still maintaining tail recursion.

The rightmost wrapper in Figure 7.2, and the two loops fac opt1 and fac opt2

together suggest how complete mode coverage with thread optimization and tail re-

cursion can be provided at once. Again, as in the case of length/2, the analysis for

the thread optimization only finds one mode, fac(+,-), suggested by the inequality

134

test N>1, and generates code for the recursive loop similar to that of fac/3, though

with the advantage that ground computation is recognized at compile time, and the

calls to the solver compiled away. The other mode, fac(-,+), the function inverse,

requires that we infer an alternative constraint, in general a difficult problem.

The definitions of fac/4 in the figure suggest how this can be done. Briefly, given

an initial affine transform analysis, we would need to add a new accumulator pair to

complete the accumulator pair threading, reverse the loop count to take advantage

of known initial values, derive the new transform applications J = < 1, 1 > (I) and

B = <I, 0>(A) from the resulting code, and infer the new constraint A<F from: one, an

assumption of intended termination, so that we are willing to prune non-terminating

branches; two, an inductive inference of monotonicity for the factorial function, by

the transform values and initial value for I of 1; and, three, the mutually exclusive

cases of the original procedure together with the base case equalities themselves, so

that we can use information from the base clause to place an upper limit on A. Finally,

an additional rewrite step would be needed, to create the second optimized loop with

the constraint I<N replaced by A<F. The transformed procedure would have improved

termination conditions over the original; the query fac(,-1) would fail instead of

looping endlessly.

This would be a challenging optimization, and without the thread-oriented global

analysis of variable chaining to suggest new accumulator pairs and loop reversal,

and the concise affine transform representation for computation, for use in analyzing

monotonicity, it probably would not be feasible.

135

7.3.4 Compilation to a Concrete Machine

Thread-translated loops are good candidates for other compiler optimizations, if

native code compilation to a phyical machine, or to an imperative language such as

C, is used to replace abstract machine emulation.

136

APPENDIX A

The CLP Scheme

The family of CLP languages was originally defined by the constraint logic pro-

gramming scheme of Jaffar et al [JLM84] [JS86b] [JLM86] [JS86a] [JL87] [JM94]. For

a more precise definition of the instances of this fanily, we’ll need to borrow some

definitions from logicians, and also the field of automated reasoning. The family of

CLP languages is defined by reference to the first-order predicate calculus, §A.1, pred-

icate calculus, so the definitions begin there. The full first-order predicate calculus is

probably not susceptible to efficient implementation, so that ideas from the field of

automated theorem proving follow, §A.2. The resulting language class is remarkable

for its blend of logical simplicity and procedural power.

A.1 Logic

Unless otherwise noted, the material in this section is based on Enderton [End72].

Recall that a first-order language with equality consists of variables, logical sym-

bols, and parameters. There is an infinite number of variables; the logical symbols

are the parentheses, equals symbol, and connectives, such as ¬, ∧, ∨, →, and↔; and

the parameters are the quantifiers ∀ and ∃, and the constant, function, and predicate

symbols. Note that the equals symbol is separate from the predicate symbols, about

137

which more later. A complete set of connectives is sufficient to define any of the

others, and in particular, {¬,∧,∨} and {¬,→} are both complete.

The terms, atoms, literals, formulas and sentences for this language are defined

inductively in the usual way, where a term is a variable or constant symbol, or a

function symbol with the appropriate number of subterms; an atom, a predicate or

equals symbol with the appropriate number of terms; a literal, an atom, possibly

negated; a formula, an atom, or a connective with the appropriate number of sub-

formula, parenthesized as needed; and a sentence, a formula where all variables are

explicitly quantified. A ground term or formula is one with no variables, and the base

is the set of ground atoms.

The parameters for such a language are determined by a structure D, a function

which assigns a non-empty set, the universe, to ∀; and from that universe, a member,

set of tuple-value pairs, or set of tuples, respectively, to each constant, function, or

predicate symbol, such that the tuples are all of the appropriate arity. A structure D

is denoted by a pair (U , Σ), the universe U and signature Σ = (c U, f U, pU) giving the

assignments from the universe to the constant, function, and predicate symbols.

A structure D will typically have at least one predicate symbol in the signature

domain, and otherwise we say that D is an algebraic structure. Similarly, two struc-

tures with signatures that are equal up to the predicate symbol mapping are said to

be algebraically equivalent.

Jaffar [JM94] calls the formulas of the language L the constraints, the structure

D the domain of computation, and (L,D) the constraint domain. What we have

been referring to as primitive constraints are simply atomic formulas using either the

equals symbol, or one of some distinguished set of predicate symbols, e.g. {<,≤, 6=,≥

138

, >}. When the meaning is clear, primitive constraints may be referred to simply as

constraints, and similarly both the domain of computation and the constraint domain

may be referred to simply as the domain.

Let an assignment be a function from values of the domain universe to the variables

of the language; then a constraint domain (L,D) and assignment θ satisfies a formula

c of the domain, |=D c θ, when c is true given the assignment θ and parameters from

D. In the case where c is a sentence, we say that D is a model of c, |=D c. Given a

set of sentences P , Mod P is the class of models of P .

For a set of constraints P , and constraint Q, P logically implies Q, P |= Q,

when for every structure and assignment satisfying the members of P , that structure

and assignment also satisfies Q. Assignments trivially satisfy sentences, so that for

constraints also sentences, P |= Q depends only on satisfaction by structures. If, in

addition, P is empty, then Q is valid, |= Q.

Given a set Λ of logical axioms that reflect the intended meaning of the connec-

tives, quantification, and equality, and a set of inference rules with which to derive

new formulas, then for an initial set of sentences P , and sequence of rule applications

deriving a formula Q from Λ ∪ P , we say Q is a theorem of P , P ` Q. For a proof

procedure `, the procedure is sound if `Q⇒ |=Q, and complete if |=Q⇒ `Q. Given

sound proof procedures for first-order logic and Gödel’s completeness theorem, logical

inference and the proof relation are equivalent, |= ⇔ `. In particular, modus ponens,

e.g. {A, A → B} ` B, is a sound and complete inference rule, as is the resolution

principle [Rob65], about which more in the next section.

Recall that the equals symbol is classified as a logical rather than predicate symbol,

so that its meaning is not open to interpretation by models. Instead, it’s defined by

139

logical axioms to be an equivalence relation, having at a minimum the intended

meaning of syntactic equality, where two terms s and t are syntactically equal if

they are textually identical, s ≡ t, or if they are alphabetic variants, terms that

can be consistently renamed to be identical. Of course the equals relation for a

particular structure can be larger than required by syntactic equality, as functions

merge equivalence classes.

A theory is a set of sentences closed over logical implication, so that for a structure

D, theory T , and sentence c, T |=D c⇒ c ∈ T . The theory of a structure D, ThD, the

smallest theory for that structure, is the set of sentences modelled by D, so that for all

sentences c, |=D c⇔ c ∈ ThD. Two structures A and B are elementarily equivalent,

when for any sentence c, |=A c ⇔ |=B c, that is, ThA = ThB. The equality

theory for a structure is a projection over the equals symbol, where by convention

the logical axioms are not counted, so that syntactic equality is referred to as the

empty equality theory. More interesting models may have commutative or associative

equality theories.

We sometimes want to use multiple languages in the same context. Given a

language L and theory T , with the theory possibly in some other language than

L, an interpretation of L into T is a well-defined mapping I consisting of formulas

modelled by T , so that the formulas of I define a non-empty universe, maintain

consistent arities for function and predicate symbols, and provide unique values for

function results. An interpretation of a language simply uses some theory to define a

syntactic translation from one language to another, so that formulas in the original

language continue to be meaningful. For a theory TL, an interpretation of TL into T

is an interpretation of L that maintains TL, so that given a formula c with translation

140

c′, if c is in TL then c′ is in T , c ∈ TL → c′ ∈ T . When the reverse is also true, the

interpretation is faithful; interpretations of complete theories into satisfiable ones are

faithful. An identity interpretation imports the syntax of L into the language of T ,

and is useful in characterizing the combination of theories from distinct languages.

Later we’ll identify a program with some set of sentences P . The meaning of P is

simply its set of logical consequences, the theory of P for some structure, or model,

D. A sentence typically has many models; it either has none, e.g. 6|= p(a) ∧ ¬p(a),

or too many to form a set. This raises the question of which model we have in mind

when defining the meaning of a program, and we’ll return to this question in §A.3,

preferring a minimal model if one exists, and accepting a standard model otherwise.

A.1.1 Implementation

Definite clauses have a dual interpretation [Kow74], as formulas in logic, and as

procedures in a programming language. The declarative interpretation is suggested

by the model-theoretic semantics, and the procedural one, by traversal of the SLD

proof tree.

Under the declarative reading, each completed clause is a relation; clause variables

are quantified universally if used in the head, and existentially if appearing only

in the body; literals in a clause body are either primitive constraints, or program

relations; the values of program relations are determined by closure over implication,

starting from program facts; and a query to that program is a subset of a relational

product, either empty, or a projection onto the query variables from the accumulated

substitution.

141

Under the procedural reading, each completed clause is a procedure; clause vari-

ables are procedure parameters if they appear in the head, and local variables if used

only in the body; goals in a clause body are either primitive operations, or calls to

other procedures; those calls are sequences of SLD resolution steps, hopefully termi-

nated by primitive operations; and a program query is a main procedure and an entry

point to the program, possibly returning an error, and otherwise an assignment to its

output parameters, computed from the constraint store.

The procedural form of the dual interpretation suggests a definition for the family

of CLP languages, and an architecture for CLP systems.

A CLP language is a first order language with equality, restricted to completed

general clauses, and including the symbols needed to express programs in some domain

of interest. A CLP system is constructed from two algorithms, a theorem prover

based on the resolution principle, and a solver to decide some constraint theory. The

primitive operations of the theorem prover correspond to SLDNF resolution steps,

and of the solver, to constraint satisfaction tests.

This section considers prover and solver implementation for general CLP systems,

first using an interpreter to define both the prover algorithm and the solver interface,

and then describing an abstract target for compilation, the WAM, that provides a

framework for solver operations.

If we add the axioms for arithmetic to our equality theory, a unifying substitu-

tion may no longer give us textually identical terms, but does reduce expressions to

variable-free numeric expressions which are textually identical after interpretation of

function symbols. E.g., applying the substitution {X = 2, Y = 3} to the system of

equations {2X + Y = 7, 3X − 2Y = 0} gives {2× 2 + 3 = 7, 3× 2− 2 = 0}.

142

The unification algorithm has the nice property of checking satisfiability at the

same time as it eliminates quantifiers to compute a solved form. Since elimination of

quantifiers for numeric constraints may be much more time-consuming, in numeric

CLP languages we distinguish checking constraints for satisfiability from computing

answer substitutions, and delay the latter until needed.

A.1.2 An Interpreter

Given a constructive proof system to answer queries, an interpreter consists simply

of a read-prove-project loop. We’ll work top down, considering first the prover, and

then the constraint solver it calls upon. By the dual reading, the prover provides

procedural flow of control, and the solver, the primitive operations of the language.

The most fundamental architectural choice for a proof system is whether proof

search should start with the query, or with the program facts, and the definition

above of a CLP system requires starting with the query.

SLDNF resolution maps directly to a top-down calling graph of program execution,

and this proves so useful in suggesting implementation techniques that we’ll take SLD

proof tree search as a given, and leave bottom-up derivation outside the scope of this

dissertation.

Figure A.1 gives a naive but correct implementation of an SLDNF interpreter,

illustrating literal and clause selection, and use of the program stack to store deriva-

tion state. Later on its defects will also serve to motivate a more efficient design,

compilation to an abstract machine.

Before examining the interpreter’s structure, note that the following notational

conventions are used in Figure A.1. Block structure is indicated by indentation, and

143

01 clp(P)

02 read Q0

03 prover(P, Q0, Q1, θId, θ1)

04 if Q1 = []
05 then project(Q0, θ1,θ2)

06 write(θ2)

07 else write(no)

08 prover(P, Q0, Q2, θ0, θ2)

09 if Q0 = []
10 then (Q0, θ0) = (Q2, θ2)
11 else Q0 = [A|T l]
12 goal(P, A, T l,Q1, θ0, θ1)

13 prover(P, Q1, Q2, θ1, θ2)

14 goal(P, A, Q0, Q2, θ0, θ2)

15 symbol(A, S, N)

16 case S/N of

17 S/N ∈ constraintSymbols :

18 if test(θ0, A)

19 then (Q0, θ0 ∪ {A}) = (Q2, θ2)
20 else (fail,) = (Q2, θ2)
21 S/N ∈ predicateSymbols :

22 clauses(S/N, P, Cs)
23 sld(P, A, Cs, Q0, Q2, θ0, θ2)

24 {¬/1} :

25 A = ¬B
26 goal(P, B, Q0, Q1, θ0,)

27 if Q1 = fail
28 then ([], θ0) = (Q2, θ2)
29 else (fail,) = (Q2, θ2)

30 sld(P, A, Cs, Q0, Q2, θ0, θ2)

31 if Cs = []
32 then (fail,) = (Q2, θ2)
33 else Cs = [(H ← B)|T l]
34 if test(θ0, A = H)

35 then prover(P, B ·Q0, Q1, θ0 ∪ {A = H}, θ1)

36 else (Q0, θ0) = (Q1, θ1)
37 if Q1 = []
38 then (Q1, θ1) = (Q2, θ2)
39 else sld(P, A, T l, Q0, Q2, θ0, θ2)

Figure A.1: A CLP Interpreter

144

the procedural keywords have their ordinary meaning, as do mathematical symbols,

e.g. {} for set brackets, () for ordered tuples, and {=,∪,∈} as binary relations. The

symbol · is infix append for lists, and |, infix cons. Square brackets punctuate lists, so

that [] is the empty list, and [H|T l], a list with head H and tail T l. Identifiers with an

initial lower case letter are constant symbols; with an initial capital or greek letter,

variables; and with an initial underscore, “don’t care” variables. Of the variables

names, P is a program, Q a query, θ a substitution, A an atom and goal, H a clause

head, and B a clause body.

Some comments about program style may be useful as well. Equality is used for

more than simply binding variables to constants or other variables; it is also used

for pattern matching, e.g. list decomposition, Q0 = [A|T l], and conditional tests,

e.g. if Q1 = []. Since the equals symbol stands for true equality, single-assignment

style variable usage is necessary, and to allow for the convenient introduction of new

variable names, recursion is used in place of loops. Subscripted variables often occur

in pairs, known as accumulator pairs, which serve to represent state changes, e.g. in

the call prover(P, Q0, Q1, θId, θ1), line 3, there is a query pair, the initial query

and the result, either [] or fail, and a substitution pair, the identity substitution

and a result, either an accumulated substitution or an arbitrary value in the case of

failure. Finally, in the sequel, procedure names will be given in the form Id/Arity,

e.g. prover/5.

Of the procedures, clp/1 is a read, solve, print sequence given some program P ;

prover/5 cdrs down a list of SLDNF goals, applying goal/6 to each one; goal/6

has three cases, as a goal is a primitive constraint, program relation, or negated goal,

either using the solver to test for satisfiability, performing an SLD reduction via a call

145

to sld/7, or calling itself recursively after stripping the negation from the goal, as the

case may be; and sld/7, after performing an SLD reduction if possible, recursively

calls prover/5 with the new current goal, and if that fails, backtracks by recursively

calling itself.

The attempted SLD reduction, lines 34–35 of sld/7, first tests whether the goal

atom can be bound to a clause head, before making the recursive call to the prover.

Here equality is used to bind the actual and formal parameters in procedure calls; and,

if there were variables only in heads and calls, as has been true for most examples up

until now, the check would be unecessary, since the binding would be deterministic.

Since programs can always be rewritten to this form, e.g. p(a)← q(b), r(c) is equiv-

alent to p(X)← X = a, Y = b, q(Y), Z = c, r(Z), the difference is only syntactic. In

practice, however, programmers find it convenient to subsume the equality bindings

by using non-variable terms in heads and calls, both in the interest of brevity, and,

for compiled code, to provide clues to the translator about when clauses might be

mutually exclusive.

The interpreter searches a proof tree whose structure is determined partly by its

input parameters, the program and query, but also by the selection rules for literals

and clauses. Once given the selection rules, the prover architecture is then determined

by the representation of execution state, a triple of the current tree position, goal,

and substitution; and the implementation of the operations on that state.

The selection rules for the interpreter are simple and unfair. Literals are selected

from and added to the current query using a stack discipline, e.g. for selection, an

atom A is popped from the head of the current query, [A|T l], and during resolution

a clause body B is prepended to the current query, B ·Q. There is a fixed selection

146

order for clauses, as well. Given some clause sequence Cs selected from the program

by clauses/3, clauses are selected from that sequence eagerly, e.g. (H ← B) in

Cs = [(H ← B)|T l]. This stack discipline for goals and fixed selection order for

clauses leads to a depth-first traversal of the proof tree.

The interpreter is incomplete for definite clauses, due to unfair selection rules; and

unsound for general clauses, due to the lack of a consistency check for programs, and

an eligibility check for negated goals.

Clause selection is by a fixed order, and goal manipulation by a stack discipline,

so that the proof tree is searched depth-first; and there is no test for eligibility before

using negation as failure, or use of the accumulated substitutions for constructive

negation afterwards, so that the operational meaning of negated goals is far different

than true negation. In the following examples of this, and following logic programming

convention, :- indicates reverse implication for completed clauses, ?-, the same,

but for queries, and commas, conjunction within clause bodies. For the program

(p(X) :- X = a)∧(q(X) :- ¬(X = b))∧(r(X) :- X = a, r(X)), the interpreter fails for

the satisfiable query ?- ¬p(X), X = b; succeeds for the unsatisfiable ?- ¬q(X), X =

b, q(X); and loops unecessarily for ?- r(X),¬p(X). Still, logic programming systems

typically select literals left-to-right from the current clause, and clauses top-to-bottom

from the program, so that proof tree search is depth-first. The procedural reading

suggests why a stack discipline is used; it follows the procedural pattern of call and

return, and so minimizes calling overhead.

Given two terms s and t, unification is the process of finding a unifier, a common

substitution θ such that the terms are textually identical, sθ ≡ tθ. E.g. for the

terms f(a, Y) and f(X, b) the substitution {X = a, Y = b} is a unifier, and given

147

an equation ∃X ∃Y : f(a, Y) = f(X, b), it provides a constructive proof that the

equation is satisfiable.

A substitution is a mapping f from variables to terms, where for some variable vi

such that f(vi) = ti, there are two cases, the identity, vi ≡ ti, and the mapping to

a non-variable term ti where any variables occurring as subterms of ti do not occur

in the domain of f . A substitution is conventionally represented as the non-identity

pairs {(vi = ti), . . .}, so that the variables occurring on the left and right hand sides

are disjoint, and a set of equations for which this is true is said to be in solved form.

Algorithms to compute solved forms vary with the equality theory. For the sim-

plest case, uninterpreted equality, we may use some variant of the unification algo-

rithm.

Given a set of equations e, then an algorithm to either convert e to an equivalent

set of equations in solved form if one exists, or otherwise fail, is as follows [NM95]. We

discard identity equations of the form X = X; fail if both sides are terms with distinct

function symbols, or if a variable occurs in a term to which it is bound; and are left

with two cases, as at least one side is a variable or not. For the first case, without loss

of generality X = t, where X does not occur in t, we substitute t for X throughout the

other equations of e. In the second, with the form e : f(s1, . . . , sn) = f(t1, . . . , tn), we

discard the equation, and add equations s1 = t1, . . . , sn = tn to e. We continue until

failure, or e is in solved form, and terminate since each case other than the last either

fails, discards an equation, or converts one to solved form, and application of the last

case is bounded by the finite size of terms. E.g., for the equation f(a, Y) = f(X, b)

we apply the last case once, immediately giving the equations {X = a, Y = b} in

solved form.

148

Although program consistency for general clauses is undecidable, stratification is

both decidable, and sufficient to guarantee that program completions are consistent

[NM95]. Unstratifiable programs have what is referred to as a loop through negation,

e.g. p ← ¬p, generally considered a poor programming practice since the result is

not only potentially unsound, but typically incomprehensible.

Since stratifiability for first-order programs is a syntactic property, and so can be

checked in a preprocessing step, it would in theory be possible to require that programs

be stratifiable. Such checks would fail for programs with second-order goals, where

the predicate name is determined at run-time. In addition, continuation-passing style

programs may not be stratifiable, and yet possibly still have a consistent completion,

another reason to avoid such checks. In any case, NAF applied to non-ground goals,

the other source of unsound inference, has received more attention, being both a more

serious problem in practice, and also more expensive to fix.

Negation as failure is sound when restricted to eligible goals over consistent

programs. Some systems test goals for eligibility by requiring groundness [Nai85].

Groundness is a sufficient but not necessary test for eligibility, so that such sys-

tems are incomplete, e.g. for the program (p(X) ← ¬q(X)) ∧ (q(X) ←) and query

← ¬p(Y), NAF succeeds with the empty computed answer substitution, and floun-

ders if limited to ground literals.

An eligibility test requires that a delay system be added to the interpreter, else it

be too frequently incomplete. A goal is delayed when, at the point during proof search

where it would otherwise have been chosen according to a fixed literal selection rule,

another goal is chosen instead; and it is woken when again considered for resolution.

Delay systems interact with goal solution, and so will be left for a later section.

149

A.2 Proof

This section describes a sound and complete proof method, resolution; an efficient

specialization of that method to individual positive conclusions, SLD resolution; and

a way to add negative information, negation as failure.

A.2.0.1 Resolution

The proof method is applied to sentences already in a canonical form, to simplify

manipulation. A sentence in conjunctive normal form is a universally quantified

conjunct of disjuncts of literals, and we assume that the variables in each disjunct

have been renamed apart from the rest of the sentence. The disjuncts are also called

clauses, and can be rewritten in clausal form, as implications where the positive and

negative literals of the disjunct are partitioned between the consequent, or head, and

antecedent, or body, respectively. The universal quantifier, negation, and implication

are complete, so that clausal form is also.

Positive and negative literals that are otherwise equal are complements, and two

such literals form a complementary pair. Two clauses in a sentence each including

one member of a complementary pair logically imply a new clause, all the literals of

the source clauses other than the complementary pair, known as the resolvent. The

inference rule that combines those clauses is sound and complete, and is called the

resolution principle [Rob65], e.g. {¬A, A ∨ B} ` {B,¬A, A ∨ B}.

There remains the problem of determining if two atoms are equal, which leads to

a discussion of substitutions and unifiers.

A substitution is a mapping f from variables to terms, where for some variable vi

such that f(vi) = ti, there are two cases, the identity, vi ≡ ti, and the mapping to

150

a non-trivial term, where any variables occurring in ti may not occur in the domain

of f . A substitution is conventionally represented as the non-identity pairs {(vi =

ti), . . .}, so that the variables occurring on the left and right hand sides are disjoint.

Substitutions differ from assignments in allowing variables to occur in the range, and

in necessarily being partial when such occurrence is for a non-identity mapping. There

are infinitely many variables, and terms in the range can be renamed, so that loss

of totality is not serious. Application of substitutions to terms is defined to avoid

variable capture, giving a function from terms to terms, so that substitutions may be

composed [NM95].

Substitutions allow us to compose equality constraints for terms. A unifier for

two terms s and t is a substitution θ such that sθ ≡ tθ. For a theory T , an equational

unifier θ is a substitution such that s and t are equal under the theory T , sθ =T tθ.

Note that textual unification is simply equational unification for the empty theory;

sθ ≡ tθ ⇔ sθ =∅ tθ. A unifier θ is also a most general unifier, or mgu, when for

any other unifier φ, there exists a substitution τ such that φ =T θτ . A theory is

unification complete if, given a unifier for two terms, there is always a most general

unifier also. Unification complete theories are unitary, finitary, or infinitary, as the

number of mgus for an equation is at most one, finite, or infinite, respectively. [Sie87].

Negative and positive literals form a complementary pair, and are candidates for

resolution, when they have a most general unifier. Given P a program having a model;

a pair (Q, θId), where Q is a clause ← (Q1 ∧ . . .∧Qn), equivalently ¬Q1 ∨ . . .∨¬Qn,

and θId is the identity substitution; and a sequence of resolution steps applied to

P ∧Q, giving a pair ([], θ), the empty clause false as a resolvent, and an accumulated

151

composition θ; then that sequence of resolution steps is a proof by counterexample

that Q is not satisfiable, and that the answer to the query, (Q1 ∧ . . . ∧Qn)θ, is.

A large program typically has many complementary pairs to choose from at any

point during the construction of a resolution proof, and that number can only grow

as each resolvent is added. In linear resolution [KK71] the current clause, either

the query or newest resolvent, is required to be one of the two clauses used at each

resolution step. Given a clause to be used in a resolution step, a selection rule chooses

a literal from that clause as candidate for a complementary pair, so that SL resolution

is linear resolution with a selection rule.

It only remains to control selection of the other literal in the complementary pair,

without unnecessarily limiting clause usage during proof construction, and applying

SL resolution to a special class of clauses gives just such a restriction. A definite

clause is a disjunctive sentence with at most one positive literal, and alternatively

an implication with at most one literal in the head. There are four cases of interest

[Kow74] for a clause, depending on the number of positive and negative literals; an

ordinary clause with literals in both head and body, a rule; a positive literal, a fact;

only negative literals, a query; and the empty clause, [] or false. Negative literals are

also known as goals. A program is a finite set of definite clauses, all of which are facts

or rules.

In SLD resolution [Kow74], linear resolution with selection rule for definite clauses,

resolution steps are also SLD derivation steps, Figure A.1. An SLD derivation for a

definite clause program P and query Q begins from the state (Q, θId) and consists

of some number of derivation steps, either infinite or leading to one of two states,

a current clause also the empty clause [], success, or a current clause with selected

152

literal for which no complement can be found, failure. A current clause with exactly

one available program clause for resolution is said to be deterministic, and a sequence

of such steps, to be deterministic computation.

Definition A.1 (SLD derivation step) Let E be a theory, P a definite clause pro-
gram, (Q, θ) the current clause and accumulated substitution, ¬Gi the selected literal
from Q, C a clause in P with head H, and φ a most general substitution such that
Hθφ =E Giθφ.

Q = ← (G1 ∧ . . . ∧Gi−1 ∧Gi ∧Gi+1 ∧ . . . ∧Gn)

C = H ← (B1 ∧ . . . ∧Bk)

Then the choice of C for resolution with Q is an SLD derivation step and gives a
new current clause Q′ with Gi replaced by the body of C, and new current substitution
θ′ = θφ.

(Q′, θ′) = (← (G1 ∧ . . . ∧Gi−1 ∧ B1 ∧ . . . ∧Bk ∧Gi+1 ∧ . . . ∧Gn), θφ)

A.2.0.2 Negation as Failure

Of course SLD resolution can derive only positive facts, since definite clauses have

only a positive literal as consequent. This has the advantage of ensuring soundness,

about which more later, as well as the obvious disadvantage of being incomplete.

Extending SLD resolution to allow the derivation of negative facts clearly gives a

more powerful proof system, yet we also want the resulting system to be sound.

Explicit representations for negative conclusions are impractical. In the general

case, it is undecidable whether a program with both negative and positive implica-

tions is consistent; e.g. given a program including ¬q ←, consistency depends on

whether there are finite successful derivations from ← q, which depends on whether

all derivations using clauses (q ← . . .) terminate in success or failure. Rather than

153

add negative facts to programs, we add an inference rule by which such facts can

be derived from definite clause programs. Such an implicit representation replaces

the undecidable problem of theory consistency with the simpler one of inference rule

soundness.

The closed world assumption [Rei] believes the program to be complete, so that

any facts about the universe not implied by the program must be false. Negation as

failure, NAF, assumes also that the proof procedure is complete, so that failure to

prove is proof of the negation.

Definite clause programs have models that are too general to correctly represent

the intended meaning of negation as failure. The program base provides a trivial

example, since any negative fact is necessarily inconsistent, so that soundness depends

on the model, of which there are a great many. Program meaning must be limited to

ensure that NAF is sound for all models, and yet at the same time, these limits must

not contradict the program implications, else there be no models at all.

The solution is to read programs as having their completed meaning. For a definite

clause program the Clark completion, or completed database view [Cla], is the theory

of its equivalence form. A definite clause program is rewritten in equivalence form

when clauses are grouped by head predicate symbol, and converted to if-and-only-if

formulas consisting of the shared head with the bodies as disjuncts, .e.g. (p ← (q ∧

r))∧(p← (s∧ t)) becomes p↔ ((q∧r)∨(s∧ t)). To ensure that the predicate clauses

can be grouped by head, we assume that they have been rewritten with variables only

as subterms of non-primitive atoms, that is heads and program predicate goals. This

form is fully as expressive as definite clauses with nested subterms in literals, since

such definite clauses may be rewritten with the addition of equality constraints using

154

fresh variables, e.g. p(a) ← q(f(b)), r(s) becomes p(X) ← X = a, Y = f(b), Z =

s, q(Y), r(Z).

For P a definite clause program, P ∗ denotes its completed form. If we take

definite clause programs to be implitly translated to completed form, reading P ∗ for

P , negative queries gain a sensible logical reading.

First, some terminology to distinguish NAF confined to queries only, from its use

in rule bodies also. Recall that a definite clause has at most one positive literal, and

that a definite clause in clausal form is an implication with the positive literal, if

any, as the head, and all others in the body. A general clause, in contrast, has any

number of positive literals, and in general clausal form has at most one such literal

as the head, with all other positive literals in the body, where they are referred to

as negative, or negated, goals. E.g., for the clause ∀x1∀x2(p(x1) ∨ q(x1) ∨ r(x2)), one

of the general clausal forms is ∀x1(p(x1) ← ∃x2(¬q(x1) ∧ ¬r(x2))). A general clause

with no head is a query, and otherwise is a program clause. A general program has

only program clauses, all in general clausal form.

SLDNF− resolution is the proof system consisting of the SLD resolution and NAF

inference rules for general queries to definite clause programs, and SLDNF resolution

is the same proof system applied to general programs. Since any clause in conjunctive

normal form can be converted to general clause form, if SLDNF resolution was a sound

and complete proof procedure we would have the expressiveness of the full first-order

predicate logic, about which more later.

Negation as failure is only a partial answer to the problem of deriving negative

information, since the soundness of NAF depends on the completeness of the un-

derlying proof system. Once NAF is used in clause bodies as well as queries, that

155

system is itself SLDNF resolution, which raises the issue of how the semantics of such

general programs should be defined. The semantics of SLD, SLDNF−, and SLDNF

proof systems form the subject of the next section.

A.3 Semantics

It’s time to draw connections between first-order predicate logic and definite clause

programs. This will allow comparison of the operational and denotational semantics

of SLD and SLDNF resolution, and also tie up some loose ends, in particular the

existence and choice of models, rules for clause and literal selection, and criteria for

equality theories and other constraint domains.

The operational semantics of SLD resolution is characterized by the set of suc-

cessful derivations.

Clause alternatives are branches in SLD resolution. Given some selection rule, the

proof tree is a tree with derivation states as nodes, and candidate clauses as branches,

where each child node is the result of an SLD derivation step of the parent node and

a program clause, each path from the root reflects an SLD derivation, and each leaf is

one of {[], fail}. Fair SLD resolution is any selection rule for literals and clauses that

finds a successful derivation whenever one exists, e.g. breadth-first search or iterative

deepening. Given some fair selection rule, the SLD forest is the set of proof trees

having as root goal an atom from the base. The success set, SS, is that subset of the

base whose proof tree includes a successful derivation sequence from P ; the success

set is also the operational meaning of P .

Proof trees and the SLD forest are useful in categorizing SLD derivations, and

similarly a lattice orders the models of a definite clause program.

156

Recall that a theory is a set of formulas closed over logical implication, and that a

theory may have either many models or none, as it is consistent or not. Note that a

definite clause equality theory is trivially consistent, as is a definite clause program,

since there are only positive conclusions, so the base is a model. Finally, let ∀x̃(φ)

abbreviate ∀x1(. . .∀xn(φ) . . .) for a formula φ.

Given an equality theory E, the meaning of a program P is the theory of P , which

can be defined inductively by TP , the immediate consequence operator, Definition A.2,

a function from structures to structures.

Definition A.2 (Immediate Consequence Operator [Apt90])

Given an equality theory E and definite clause theory P , the immediate consequence
operator is denoted T E

P , or simply TP when E is understood. Let A and B be two
structures such that B is the immediate consequence of A. Then B logically implies a
positive literal G when there is an assignment θ for a definite clause from the theory,
such that A logically implies the body, and θ is an E-unifier of the head with G.

|=B G ⇔ ∀x̃(B1 ∧ . . . ∧ Bn → H) ∈ P ∧
|=A {B1, . . . , Bn, H = G}θ

An interesting special case of the immediate consequence operator occurs for the

empty equality theory and some definite clause equality theory E; T ∅
E is an operator

on algebraic structures, the atomic literals implied by those structures are equations,

the clauses in E are equational definite clauses, and unification is syntactic identity.

E.g., |=B e⇔ ∀x̃(e1 ∧ . . . ∧ en → eh) ∈ E∧ |=A {e1, . . . , en}θ ∧ ehθ ≡ eθ.

Before considering TP furthur, it’s useful to review complete lattices and their

operators [Apt90] [Mah88]. Let ⊆ be the partial ordering and ∪ the meet operator

for elements of a lattice, and let ∅ be the least element. An operator T is monotonic

157

when, for elements C and D of the partial order ⊆, the ordering on the domain and

range of T is consistent, so that C ⊆ D → T (C) ⊆ T (D). T is continuous when,

for every infinite sequence D0 ⊆ D1 ⊆ . . ., the operator T distributes over sequence

union, that is, T (
⋃∞

n=0Dn) =
⋃∞

n=0 T (Dn). For a monotonic operator T , repeated

application starting from the least element is denoted by ↑, so that T ↑n is T applied

n times to ∅. Finally, a monotonic operator T has a least fixpoint, lfp(T), and when

T is continuous that least fixpoint is T ↑ω.

Let ⊆ and ∪ relate the models in the domain of TP by set inclusion and set union

of the assignments to the models’ function and predicate symbols, so that ∅ and the

base are the least and greatest elements, respectively. Then the domain of TP forms

a lattice, TP is monotonic and continuous, and the least fixpoint of P , lfp(TP) and

also TP ↑ω, is a model of P .

It’s natural to ask what relation this model has to other models of P , since we

would like to determine the logical consequences of P , e.g. given a model D, where

P |=D A, we want to know whether P |= A.

Models of the empty theory are a special case. A Herbrand model of a program

P has a universe HP consisting of only those ground terms named by the constant,

function, and predicate symbols of P , and defines equality as simply syntactic equality,

so that functors and constants are uninterpreted. For a program P with syntactic

equality, T ∅
P ↑ω is the least Herbrand model. Least models have the happy property of

being subsets of all other models of the program, so that for P |=Hleast
A, we trivially

have P |= A.

158

Since more powerful constraint theories typically do not have least models, we

place restrictions on the constraint domain and theory to ensure that they are well-

behaved. Domain universes must be compact; languages, expressive; theories, com-

plete; and models, minimal. More precisely, we have the following requirements for

a constraint domain (D,L), and theory E. The constraint domain is solution com-

pact [JL87] if each element of the domain universe has a unique representation as a

possibly infinite conjunction of constraints, and for each constraint in the language

L, its complement can also be expressed in the language, again as a possibly infinite

conjunction of constraints. The theory is satisfaction complete [JL87] when either a

constraint or its negation is in the logical inference relation, so that lacking E |= c,

we must have E |= ¬c. The structure D corresponds [JS86a] to a theory E when,

for any atom A, we have |=D A ⇔ E |= A; two models that correspond to the same

equality theory are algebraically equivalent.

We can now compare the operational and logical semantics of SLD resolution,

given a solution compact constraint domain corresponding to a satisfaction complete

theory.

The operational semantics for an equality theory E and definite clause program

P is defined as the success set of the SLD forest, those atoms from the base whose

goals have a successful derivation, or SLD refutation. A derivation consists of SLD

resolution steps that bind goals and clause heads by equational unification, providing

an accumulated substitution that gives a constructive proof that the root atom is in

the success set.

The logical semantics for the equality theory and program P is defined by the

least fixpoint of the immediate consequence operator, TP ↑ω. Successive applications

159

of TP construct this model by adding more and more of the atoms and equations that

can be inferred from the theory and program.

The operational semantics defines the proof, or `, relation, and the logical seman-

tics, the logical implication, or |= relation. For an atom A, we have P `SLDfair
A⇔

A ∈ SS ⇔ A ∈ TP ↑ ω ⇔ A ∈ lfp(TP) ⇔ P |= A, and in particular, the success

set and least fixpoint of a program are equal, SS = lfp, as are the proof and logical

inference relations, ` = |=, so that fair SLD resolution is both sound and complete.

160

BIBLIOGRAPHY

[AK90] Hassan Äıt-Kaci. The WAM: A (real) tutorial. DEC Research Labs
Report 5, Digital Equipment Corporation, Paris, FR, 1990.

[AK91] Hassan Äıt-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruc-
tion. The MIT Press, Cambridge, MA, 1991.

[Apt90] Krzysztof R. Apt. Introduction to logic programming. In J. van Leewen,
editor, Handbook of Theoretical Computer Science, volume B: Formal

Models and Semantics, chapter 10, pages 1157–1199. The MIT Press,

1990.

[BCM89] P. G. Bosco, C. Cecchi, and C. Moiso. An extension of WAM for K-

LEAF: A WAM-based compilation of conditional narrowing. In G. Levi
and M. Martelli, editors, Proceedings of the Sixth International Confer-

ence on Logic Programming (ICLP’89), pages 318–333. The MIT Press,
June 1989.

[BKM95] C. Bailey-Kellogg and S. Michaylov. Efficient extraction of impera-
tive computation in constraint logic programs. Technical Report OSU-

CISRC-5/95-TR23, Department of Computer and Information Science,
Ohio State University, 1995.

[Bor81] Alan Borning. The programming language aspects of ThingLab, a con-
straint – oriented simulation laboratory. ACM Transactions on Pro-

gramming Languages and Systems, 3(4):252–387, October 1981.

[Car87] M. Carlsson. Freeze, indexing and other implemenation issues on the
wam. In Jean-Louis Lassez, editor, Proceedings of the Fourth Interna-

tional Conference on Logic Programming (ICLP’87), MIT Press Series
in Logic Programming, pages 40–58. The MIT Press, May 1987.

[CD96] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(fd).
The Journal of Logic Programming, 27(3):185–226, June 1996.

161

[Cla] K. L. Clark. Negation as failure. In Gallaire and Minker [GM], pages
293–322.

[DC93] Daniel Diaz and Philippe Codognet. A minimal extension of the WAM

for clp(FD). In David S. Warren, editor, Proceedings of the Tenth Inter-
national Conference on Logic Programming (ICLP’93), pages 774–790.

The MIT Press, June 1993.

[DdlBH+99] B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, , and
P. Stuckey. An overview of HAL. In Proceedings of Principles and

Practice of Constraint Programming, October 1999.

[Dia00] Daniel Diaz. GNU PROLOG: A Native Prolog Compiler with Constraint
Solving over Finite Domains. 1.4, for GNU Prolog version 1.2.1 edition,

July 2000.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic
Press, Orlando, Florida, 1972.

[FH88] Anthony J. Field and Peter G. Harrison. Functional Programming.

Addison-Wesley, Reading, MA, 1988.

[GM] H. Gallaire and J. Minker, editors. Proceedings of the Symposium on

Logic and Databases, New York. Plenum Press.

[Hen91] P. Van Hentenryck. Constraint logic programming. Technical Report
CS-91-05, Department of Computer Science, Brown University, January

1991.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint Logic Programming. In
Conference record of the 14th ACM Symposium on Principles of Pro-

gramming Languages (POPL’87), pages 111–119. ACM, January 1987.

[JLM84] Joxan Jaffar, Jean-Louis Lazzez, and Michael J. Maher. A theory of
complete logic programs with equality. The Journal of Logic Program-

ming, 3:211–223, October 1984.

[JLM86] J. Jaffar, J.-L. Lassez, and M. J. Maher. A logic programming language
scheme. In D. Degroot and G. Lindstrom, editors, Logic Programming:

Functions, Relations, and Equations, pages 441–467, Englewood Cliffs,
New Jersey, 1986. Prentice Hall.

[JLW90] Dean Jacobs, Anno Langen, and Will Winsborough. Multiple special-

ization of logic programs with run-time test. In David H. D. Warren and
Péter Szeredi, editors, Proceedings of the Seventh International Confer-

ence on Logic Programming, pages 717–731. The MIT Press, June 1990.

162

[JM94] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A
survey. The Journal of Logic Programming, 19 & 20:503–582, May 1994.

[JMM91] Niels Jørgensen, Kim Marriott, and Spiro Michaylov. Some global
compile-time optimizations for CLP(R). In Vijay Saraswat and Kazunori

Ueda, editors, Logic Programming, Proceedings of the 1991 International
Symposium (ILPS’91), pages 420–434. The MIT Press, October 1991.

[JMSY92a] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. An ab-
stract machine for CLP(R). In Proceedings of the ACM SIGPLAN Sym-

posium on Programming Language Design and Implementation (PLDI),
pages 128–139. ACM Press, June 1992.

[JMSY92b] Joxan Jaffar, Spiro Michayov, Peter Stuckey, and Roland Yap. The

CLP(R) language and system. ACM Transactions on Programming
Languages and Systems, 14(3):339–395, July 1992.

[Jø92] Niels Jørgensen. Abstract Interpretation of Constraint Logic Programs.
PhD thesis, Roskilde University Center, Denmark, July 1992.

[JRA89] Lee W. Johnson, R. Dean Riess, and Jimmy T. Arnold. Introduction to
Linear Algebra. Addison-Wesley, Reading, MA, second edition, 1989.

[JS86a] J. Jaffar and P. Stuckey. Logic program semantics for programming
with equations. In Ehud Shapiro, editor, Proceedings of the Third In-

ternational Conference on Logic Programming (ICLP’86), volume 225
of Lecture Notes in Computer Science, pages 313–326. Springer-Verlag,

1986.

[JS86b] Joxan Jaffar and Peter J. Stuckey. Canonical logic programs. The Jour-
nal of Logic Programming, 2:143–155, July 1986.

[KK71] R. Kowalski and D. Kuehner. Linear resolution with selection function.
Artificial Intelligence, 2:227–260, 1971.

[KMM+99] A. Kelly, K. Marriott, A. Macdonald, P. Stuckey, and R. Yap. Opti-
mizing compilation of CLP(R). ACM Transactions on Programming

Languages and Systems, 8(1):111–138, January 1999.

[Kow74] R. Kowalski. Predicate logic as programming language. pages 569–574,

August 1974.

[Kow88] R. Kowalski. The early years of logic programming. Communications of

the ACM, 31(1):38–44, 1988.

163

[LO89] Ewing Lusk and Ross Overbeek, editors. Proceedings of the North Amer-
ican Conference on Logic Programming (NACLP’89). The MIT Press,

October 1989.

[Lov77] David Loveman. Program improvement by source-to-source transforma-
tion. Journal of ACM, 24(1):121–145, January 1977.

[MAEL65] John McCarthy, Paul Abrahams, Daniel Edwards, and Michael Levin.

LISP 1.5 Programmer’s Manual. MIT Press, Cambridge, Massachusetts,
1965.

[Mah88] Michael J. Maher. Equivalences of logic programs. In Jack Minker, edi-

tor, Foundations of Deductive Databases and Logic Programming, chap-
ter 16, pages 627–656. Morgan Kaufman, 1988.

[Mic92] Spiro Michaylov. Design and Implementation of Practical Constraint

Logic Programming Systems. PhD thesis, School of Computer Science,
Carnegie Mellon University, August 1992. Available as technical report

CMU-CS-92-168.

[Mic94] Spiro Michaylov. Repeated redundant inequalities in constraint logic

programming. Technical Report OSU-CISRC-6/94-TR31, Department
of Computer and Information Science, Ohio State University, 1994.

[MS93] Kim Marriott and Peter Stuckey. The 3 R’s of optimizing constraint logic

programs: Refinement, removal and reordering. In POPL’93: Proceed-
ings ACM SIGPLAN Symposium on Principles of Programming Lan-

guages. ACM SIGACT-SIGPLAN, ACM Press, January 1993.

[MSY93] Andrew D. MacDonald, Peter Stuckey, and Roland Yap. Redundancy
of variables in CLP(∇). In Dale Miller, editor, Logic Programming -

Proceedings of the Third International Symposium (ILPS’93). The MIT
Press, 1993.

[Nai85] Lee Naish. Negation and Control in Prolog. Technical Report 85/12,

University of Melbourne, 1985.

[NJ89] G. Nadathur and B. Jayaraman. Towards a WAM Model for λ-Prolog.
In Lusk and Overbeek [LO89], pages 1180–1198.

[NM95] Ulf Nilsson and Jan Maluszynski. Logic, Programming, and Prolog. John

Wiley & Sons, Chichester, second edition, 1995. Chapter 14 is on con-
straint logic programming.

[O’K90] Richard A. O’Keefe. The Craft of Prolog. The MIT Press, Cambridge,

Mass., 1990.

164

[Rei] Raymond Reiter. On closed world databases. In Gallaire and Minker
[GM], pages 55–76.

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. Journal of ACM, 12(1):23–41, January 1965.

[Roy94] Peter Van Roy. 1983–1993: The wonder years of sequential prolog im-
plementation. The Journal of Logic Programming, 15(19,20):385–441,

1994.

[SHC96] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution

algorithm of Mercury: an efficient purely declarative logic programming
language. The Journal of Logic Programming, 29(1 – 3):17–64, Oct–Dec

1996.

[Sie87] Jørg Siekman. Unification theory. In Advances in Artificial Intelligence
– II, pages 365–400. Horth-Holland, 1987.

[SK93] L. Sterling and M. Kirschenbaum. Applying Techniques to Skeletons.
In JM. Jacquet, editor, Constructing Logic Programs, pages 127–140.

Wiley, 1993.

[SS80] G. J. Sussman and G. L. Steele. CONSTRAINTS — a language

for expressing almost–hierarchical descriptions. Artificial Intelligence,
14(1):1–39, 1980.

[Sta96] Richard M. Stallman. Using and Porting GNU GCC. The Free Software
Foundation, Boston, MA, 1996.

[War83] D. H. D Warren. An Abstract Prolog Instruction Set. Technical Report

309, SRI, October 1983.

[Win89] W. Winsborough. Path Dependent Reachability Analysis for Multiple

Specialization. In Lusk and Overbeek [LO89], pages 133–153.

[Win92] W. Winsborough. Multiple Specialization using Minimal-Function

Graph Semantics. The Journal of Logic Programming, 13(2 & 3):259–
290, July 1992.

165

